Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Steroids ; 72(6-7): 535-44, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17509630

ABSTRACT

The crystal structures of chenodeoxycholic acid (CDCA), ursodeoxycholic acid (7beta isomer of CDCA) and their other two epimers (3beta,7alpha- and 3beta,7beta-isomers) have been resolved. The four isomers were recrystallized from p-xylene. CDCA crystal is hexagonal P6(5) while the crystals of the other three isomers are orthorhombic (P2(1)2(1)2(1) space group). Only the 3beta,7beta isomer forms an inclusion complex with the solvent with a 1:1 stoichiometry. In all cases, the three hydrogen bond sites (the two hydroxy groups, O3-H and O7-H, and the carboxylic acid group of the side chain, O24bO24a-H) simultaneously act as hydrogen bond donors and acceptors. By considering that O24a is always donor and O24b is always acceptor, the hydrogen bond sequences can be understood on the basis of the interaction between the two hydroxy groups. However the comparison between the four compounds is complicated by the existence of two molecules in the asymmetric unit in the UDCA crystal resulting in that the same hydrogen bond site (for instance O3) can be donor towards two different acceptors (either O7 or O24b). As in the case of the four isomers of deoxycholic acid (Steroids 2004, 69, 379), the other three isomers present a donor-->acceptor sequence, which is O7-->O3 when O3-H is beta and O3-->O7 when O3-H is alpha. The spatial orientation of the carboxylic acid of the side chain is referred to two almost perpendicular planes (defined by (1) the carbon atoms C1/C6-C17/C20 and by (2) the methyl groups C18-C19 and the two carbon atoms to which they are linked, C10 and C13, respectively). Only the side chain of CDCA evidences a positive deviation towards the hydrophobic beta side of the molecule.


Subject(s)
Chenodeoxycholic Acid/chemistry , Ursodeoxycholic Acid/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...