Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 12(5): 805-811, 2021 May 13.
Article in English | MEDLINE | ID: mdl-34055229

ABSTRACT

The accumulation of hyperphosphorylated tau protein in the brain is regarded as one of the hallmarks of Alzheimer's disease (AD). In vivo imaging of tau aggregates is helpful for diagnosis and monitoring of the progression of AD. In this study, we designed and synthesized novel radioiodinated benzimidazopyrimidine (BIPM) and pyridoimidazopyridine (PIP) derivatives with a monomethylamino, monoethylamino, monopropylamino, or diethylamino group as tau imaging probes for single-photon-emission computed tomography (SPECT). On in vitro autoradiography with AD brain sections, [125I]PIP-NHMe showed the highest selective binding affinity for tau aggregates among the radioiodinated BIPM and PIP derivatives. In a biodistribution study using normal mice, [125I]PIP-NHMe and [125I]PIP-NHEt displayed high initial uptake (6.62 and 6.86% ID/g, respectively, at 2 min postinjection) into and rapid clearance from the brain, with brain2 min/brain30 min ratios of 38.9 and 28.6, respectively. These results suggest that [123I]PIP-NHMe may be a novel SPECT probe that is useful for detecting tau aggregates in the AD brain.

2.
ACS Med Chem Lett ; 11(2): 120-126, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32071677

ABSTRACT

Tau aggregate, which is the main component of the neurofibrillary tangle, is an attractive imaging target for diagnosing and monitoring the progression of Alzheimer's disease (AD). In this study, we designed and synthesized six radioiodinated 6,5,6-tricyclic compounds to explore novel scaffolds for tau imaging probes. On in vitro autoradiography of AD brain sections, pyridoimidazopyridine and benzimidazopyrimidine derivatives ([125I]21 and [125I]22, respectively) showed selective binding affinity for tau aggregates, whereas carbazole, pyrrolodipyridine, and pyridoimidazopyrimidine derivatives ([125I]10, [125I]12, and [125I]23, respectively) bound ß-amyloid aggregates. In a biodistribution study using normal mice, [125I]21 and [125I]22 showed high initial uptakes (5.73 and 5.66% ID/g, respectively, at 2 min postinjection) into and rapid washout (0.14 and 0.10% ID/g, respectively, at 60 min postinjection) from the brain. Taken together, two novel scaffolds including pyridoimidazopyridine and benzimidazopyrimidine may be applied to develop useful tau imaging probes.

3.
Bioorg Med Chem ; 27(16): 3587-3594, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31285098

ABSTRACT

Hyperphosphorylated tau proteins are one of the neuropathological hallmarks in the Alzheimer's disease (AD) brain. The in vivo imaging of tau aggregates with nuclear medical imaging probes is helpful for the further comprehension of and medical intervention in the AD pathology. For tau-selective PET imaging, we newly designed and synthesized 18F-labeled benzimidazopyridine (BIP) derivatives with fluoroalkylamino groups, [18F]IBIPF1 and [18F]IBIPF2, and evaluated their utilities as tau imaging probes. They both bound selectively to tau against amyloid ß (Aß) aggregates in AD brain sections in vitro, and showed good pharmacokinetics in mouse brains in vivo. Notably, [18F]IBIPF1 exhibited high tau-selectivity (Tau/Aß ratio = 34.8), high brain uptake (6.22% ID/g at 2 min postinjection), and subsequent washout (2.77% ID/g at 30 min postinjection). In vivo analysis of radiometabolites indicated that [18F]IBIPF1 was stable against metabolism in the mouse brain. These encouraging preclinical results suggest that further structural optimization based on the BIP scaffold may lead to the development of more useful tau imaging probes.


Subject(s)
Alzheimer Disease/diagnostic imaging , Positron-Emission Tomography/methods , Pyridines/chemistry , tau Proteins/metabolism , Humans , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...