Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(5): 112450, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37126447

ABSTRACT

Sleep consists of two basic stages: non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep is characterized by slow high-amplitude cortical electroencephalogram (EEG) signals, while REM sleep is characterized by desynchronized cortical rhythms. Despite this, recent electrophysiological studies have suggested the presence of slow waves (SWs) in local cortical areas during REM sleep. Electrophysiological techniques, however, have been unable to resolve the regional structure of these activities because of relatively sparse sampling. Here, we map functional gradients in cortical activity during REM sleep using mesoscale imaging in mice and show local SW patterns occurring mainly in somatomotor and auditory cortical regions with minimum presence within the default mode network. The role of the cholinergic system in local desynchronization during REM sleep is also explored by calcium imaging of cholinergic activity within the cortex and analyzing structural data. We demonstrate weaker cholinergic projections and terminal activity in regions exhibiting frequent SWs during REM sleep.


Subject(s)
Auditory Cortex , Sleep, Slow-Wave , Mice , Animals , Sleep, REM/physiology , Electroencephalography/methods , Sleep , Sleep, Slow-Wave/physiology
2.
Learn Mem ; 28(1): 7-11, 2021 01.
Article in English | MEDLINE | ID: mdl-33323496

ABSTRACT

Neocortical sleep spindles have been shown to occur more frequently following a memory task, suggesting that a method to increase spindle activity could improve memory processing. Stimulation of the neocortex can elicit a slow oscillation (SO) and a spindle, but the feasibility of this method to boost SO and spindles over time has not been tested. In rats with implanted neocortical electrodes, stimulation during slow wave sleep significantly increased SO and spindle rates compared to control rest periods before and after the stimulation session. Coordination between hippocampal sharp-wave ripples and spindles also increased. These effects were reproducible across five consecutive days of testing, demonstrating the viability of this method to increase SO and spindles.


Subject(s)
Brain Waves/physiology , Electric Stimulation , Hippocampus/physiology , Neocortex/physiology , Sleep Stages/physiology , Animals , Implantable Neurostimulators , Rats
3.
Front Neurosci ; 14: 551843, 2020.
Article in English | MEDLINE | ID: mdl-33122986

ABSTRACT

Circadian rhythm misalignment has a deleterious impact on the brain and the body. In rats, exposure to a 21-hour day length impairs hippocampal dependent memory. Sleep, and particularly K-complexes and sleep spindles in the cortex, have been hypothesized to be involved in memory consolidation. Altered K-complexes, sleep spindles, or interaction between the cortex and hippocampus could be a mechanism for the memory consolidation failure but has yet to be assessed in any circadian misalignment paradigm. In the current study, continuous local field potential recordings from five rats were used to assess the changes in aspects of behavior and sleep, including wheel running activity, quiet wakefulness, motionless sleep, slow wave sleep, REM sleep, K-complexes and sleep spindles, in rats exposed to six consecutive days of a T21 light-dark cycle (L9:D12). Except for a temporal redistribution of sleep and activity during the T21, there were no changes in period, or total amount for any aspect of sleep or activity. These data suggest that the memory impairment elicited from 6 days of T21 exposure is likely not due to changes in sleep architecture. It remains possible that hippocampal plasticity is affected by experiencing light when subjective circadian phase is calling for dark. However, if there is a reduction in hippocampal plasticity, changes in sleep appear not to be driving this effect.

5.
Philos Trans R Soc Lond B Biol Sci ; 375(1799): 20190227, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32248781

ABSTRACT

Interaction between hippocampal sharp-wave ripples (SWRs) and UP states, possibly by coordinated reactivation of memory traces, is conjectured to play an important role in memory consolidation. Recently, it was reported that SWRs were differentiated into multiple subtypes. However, whether cortical UP states can also be classified into subtypes is not known. Here, we analysed neural ensemble activity from the medial prefrontal cortex from rats trained to run a spatial sequence-memory task. Application of the hidden Markov model (HMM) with three states to epochs of UP-DOWN oscillations identified DOWN states and two subtypes of UP state (UP-1 and UP-2). The two UP subtypes were distinguished by differences in duration, with UP-1 having a longer duration than UP-2, as well as differences in the speed of population vector (PV) decorrelation, with UP-1 decorrelating more slowly than UP-2. Reactivation of recent memory sequences predominantly occurred in UP-2. Short-duration reactivating UP states were dominated by UP-2 whereas long-duration ones exhibit transitions from UP-1 to UP-2. Thus, recent memory reactivation, if it occurred within long-duration UP states, typically was preceded by a period of slow PV evolution not related to recent experience, and which we speculate may be related to previously encoded information. If that is the case, then the transition from UP-1 to UP-2 subtypes may help gradual integration of recent experience with pre-existing cortical memories by interleaving the two in the same UP state. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.


Subject(s)
Memory Consolidation/physiology , Prefrontal Cortex/physiology , Sleep, Slow-Wave/physiology , Animals , Male , Rats , Rats, Inbred BN
6.
Front Neuroinform ; 13: 39, 2019.
Article in English | MEDLINE | ID: mdl-31214005

ABSTRACT

Neurons which fire in a fixed temporal pattern (i.e., "cell assemblies") are hypothesized to be a fundamental unit of neural information processing. Several methods are available for the detection of cell assemblies without a time structure. However, the systematic detection of cell assemblies with time structure has been challenging, especially in large datasets, due to the lack of efficient methods for handling the time structure. Here, we show a method to detect a variety of cell-assembly activity patterns, recurring in noisy neural population activities at multiple timescales. The key innovation is the use of a computer science method to comparing strings ("edit similarity"), to group spikes into assemblies. We validated the method using artificial data and experimental data, which were previously recorded from the hippocampus of male Long-Evans rats and the prefrontal cortex of male Brown Norway/Fisher hybrid rats. From the hippocampus, we could simultaneously extract place-cell sequences occurring on different timescales during navigation and awake replay. From the prefrontal cortex, we could discover multiple spike sequences of neurons encoding different segments of a goal-directed task. Unlike conventional event-driven statistical approaches, our method detects cell assemblies without creating event-locked averages. Thus, the method offers a novel analytical tool for deciphering the neural code during arbitrary behavioral and mental processes.

7.
Neural Netw ; 108: 172-191, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30199783

ABSTRACT

Plasticity is one of the most important properties of the nervous system, which enables animals to adjust their behavior to the ever-changing external environment. Changes in synaptic efficacy between neurons constitute one of the major mechanisms of plasticity. Therefore, estimation of neural connections is crucial for investigating information processing in the brain. Although many analysis methods have been proposed for this purpose, most of them suffer from one or all the following mathematical difficulties: (1) only partially observed neural activity is available; (2) correlations can include both direct and indirect pseudo-interactions; and (3) biological evidence that a neuron typically has only one type of connection (excitatory or inhibitory) should be considered. To overcome these difficulties, a novel probabilistic framework for estimating neural connections from partially observed spikes is proposed in this paper. First, based on the property of a sum of random variables, the proposed method estimates the influence of unobserved neurons on observed neurons and extracts only the correlations among observed neurons. Second, the relationship between pseudo-correlations and target connections is modeled by neural propagation in a multiplicative manner. Third, a novel information-theoretic framework is proposed for estimating neuron types. The proposed method was validated using spike data generated by artificial neural networks. In addition, it was applied to multi-unit data recorded from the CA1 area of a rat's hippocampus. The results confirmed that our estimates are consistent with previous reports. These findings indicate that the proposed method is useful for extracting crucial interactions in neural signals as well as in other multi-probed point process data.


Subject(s)
Action Potentials , Nerve Net , Neural Networks, Computer , Action Potentials/physiology , Animals , Hippocampus/physiology , Nerve Net/physiology , Neurons/physiology , Rats
8.
J Neurosci ; 36(36): 9342-50, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27605610

ABSTRACT

UNLABELLED: The hippocampus is thought to contribute to episodic memory by creating, storing, and reactivating patterns that are unique to each experience, including different experiences that happen at the same location. Hippocampus can combine spatial and contextual/episodic information using a dual coding scheme known as "global" and "rate" remapping. Global remapping selects which set of neurons can activate at a given location. Rate remapping readjusts the firing rates of this set depending on current experience, thus expressing experience-unique patterns at each location. But can the experience-unique component be retrieved spontaneously? Whereas reactivation of recent, spatially selective patterns in hippocampus is well established, it is never perfect, raising the issue of whether the experiential component might be absent. This question is key to the hypothesis that hippocampus can assist memory consolidation by reactivating and broadcasting experience-specific "index codes" to neocortex. In CA3, global remapping exhibits attractor-like dynamics, whereas rate remapping apparently does not, leading to the hypothesis that only the former can be retrieved associatively and casting doubt on the general consolidation hypothesis. Therefore, we studied whether the rate component is reactivated spontaneously during sleep. We conducted neural ensemble recordings from CA3 while rats ran on a circular track in different directions (in different sessions) and while they slept. It was shown previously that the two directions of running result in strong rate remapping. During sleep, the most recent rate distribution was reactivated preferentially. Therefore, CA3 can retrieve patterns spontaneously that are unique to both the location and the content of recent experience. SIGNIFICANCE STATEMENT: The hippocampus is required for memory of events and their spatial contexts. The primary correlate of hippocampal activity is location in space, but multiple memories can occur in the same location. To be useful for distinguishing these memories, the hippocampus must be able, not only to express, but also to retrieve both spatial and nonspatial information about events. Whether it can retrieve nonspatial information has been challenged recently. We exposed rats to two different experiences (running in different directions) in the same locations and showed that even the nonspatial components of hippocampal cell firing are reactivated spontaneously during sleep, supporting the conclusion that both types of information about a recent experience can be retrieved.


Subject(s)
Action Potentials/physiology , Brain Mapping , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/physiology , Neurons/physiology , Animals , Electroencephalography , Male , Maze Learning/physiology , Memory , Nerve Net/physiology , Rats , Rats, Long-Evans , Rats, Wistar , Statistics as Topic , Time Factors
9.
Neural Comput ; 26(10): 2247-93, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24922506

ABSTRACT

The investigation of neural interactions is crucial for understanding information processing in the brain. Recently an analysis method based on information geometry (IG) has gained increased attention, and the property of the pairwise IG measure has been studied extensively in relation to the two-neuron interaction. However, little is known about the property of IG measures involving more neuronal interactions. In this study, we systematically investigated the influence of external inputs and the asymmetry of connections on the IG measures in cases ranging from 1-neuron to 10-neuron interactions. First, the analytical relationship between the IG measures and external inputs was derived for a network of 10 neurons with uniform connections. Our results confirmed that the single and pairwise IG measures were good estimators of the mean background input and of the sum of the connection weights, respectively. For the IG measures involving 3 to 10 neuronal interactions, we found that the influence of external inputs was highly nonlinear. Second, by computer simulation, we extended our analytical results to asymmetric connections. For a network of 10 neurons, the simulation showed that the behavior of the IG measures in relation to external inputs was similar to the analytical solution obtained for a uniformly connected network. When the network size was increased to 1000 neurons, the influence of external inputs almost disappeared. This result suggests that all IG measures from 1-neuron to 10-neuron interactions are robust against the influence of external inputs. In addition, we investigated how the strength of asymmetry influenced the IG measures. Computer simulation of a 1000-neuron network showed that all the IG measures were robust against the modulation of the asymmetry of connections. Our results provide further support for an information-geometric approach and will provide useful insights when these IG measures are applied to real experimental spike data.


Subject(s)
Cell Communication , Models, Neurological , Neural Networks, Computer , Neurons/physiology , Animals , Computer Simulation , Humans , Nerve Net/physiology
10.
Neural Comput ; 26(7): 1455-83, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24708372

ABSTRACT

A graph is a mathematical representation of a set of variables where some pairs of the variables are connected by edges. Common examples of graphs are railroads, the Internet, and neural networks. It is both theoretically and practically important to estimate the intensity of direct connections between variables. In this study, a problem of estimating the intrinsic graph structure from observed data is considered. The observed data in this study are a matrix with elements representing dependency between nodes in the graph. The dependency represents more than direct connections because it includes influences of various paths. For example, each element of the observed matrix represents a co-occurrence of events at two nodes or a correlation of variables corresponding to two nodes. In this setting, spurious correlations make the estimation of direct connection difficult. To alleviate this difficulty, a digraph Laplacian is used for characterizing a graph. A generative model of this observed matrix is proposed, and a parameter estimation algorithm for the model is also introduced. The notable advantage of the proposed method is its ability to deal with directed graphs, while conventional graph structure estimation methods such as covariance selections are applicable only to undirected graphs. The algorithm is experimentally shown to be able to identify the intrinsic graph structure.


Subject(s)
Models, Theoretical , Algorithms , Probability
11.
J Neurosci ; 34(16): 5431-46, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24741034

ABSTRACT

Navigation requires coordination of egocentric and allocentric spatial reference frames and may involve vectorial computations relative to landmarks. Creation of a representation of target heading relative to landmarks could be accomplished from neurons that encode the conjunction of egocentric landmark bearings with allocentric head direction. Landmark vector representations could then be created by combining these cells with distance encoding cells. Landmark vector cells have been identified in rodent hippocampus. Given remembered vectors at goal locations, it would be possible to use such cells to compute trajectories to hidden goals. To look for the first stage in this process, we assessed parietal cortical neural activity as a function of egocentric cue light location and allocentric head direction in rats running a random sequence to light locations around a circular platform. We identified cells that exhibit the predicted egocentric-by-allocentric conjunctive characteristics and anticipate orienting toward the goal.


Subject(s)
Brain Mapping , Orientation/physiology , Parietal Lobe/cytology , Parietal Lobe/physiology , Spatial Behavior/physiology , Action Potentials/physiology , Afferent Pathways/physiology , Animals , Blinking/physiology , Cues , Electric Stimulation , Head , Hippocampus/physiology , Light , Male , Medial Forebrain Bundle/physiology , Neurons/physiology , Rats
12.
J Neurosci ; 34(16): 5454-67, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24741036

ABSTRACT

Characterization of synaptic connectivity is essential to understanding neural circuit dynamics. For extracellularly recorded spike trains, indirect evidence for connectivity can be inferred from short-latency peaks in the correlogram between two neurons. Despite their predominance in cortex, however, significant interactions between excitatory neurons (E) have been hard to detect because of their intrinsic weakness. By taking advantage of long duration recordings, up to 25 h, from rat prefrontal cortex, we found that 7.6% of the recorded pyramidal neurons are connected. This corresponds to ∼70% of the local E-E connection probability that has been reported by paired intracellular recordings (11.6%). This value is significantly higher than previous reports from extracellular recordings, but still a substantial underestimate. Our analysis showed that long recording times and strict significance thresholds are necessary to detect weak connections while avoiding false-positive results, but will likely still leave many excitatory connections undetected. In addition, we found that hyper-reciprocity of connections in prefrontal cortex that was shown previously by paired intracellular recordings was only present in short-distance, but not in long distance (∼300 micrometers or more) interactions. As hyper-reciprocity is restricted to local clusters, it might be a minicolumnar effect. Given the current surge of interest in very high-density neural spike recording (e.g., NIH BRAIN Project) it is of paramount importance that we have statistically reliable methods for estimating connectivity from cross-correlation analysis available. We provide an important step in this direction.


Subject(s)
Action Potentials/physiology , Neural Pathways/physiology , Neurons/physiology , Prefrontal Cortex/cytology , Synaptic Transmission/physiology , Animals , Electric Stimulation , Male , Nerve Net/physiology , Neural Pathways/cytology , Patch-Clamp Techniques , Probability , Rats , Rats, Inbred F344 , Reaction Time , Time Factors , Wakefulness
13.
Article in English | MEDLINE | ID: mdl-24605089

ABSTRACT

The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.


Subject(s)
Action Potentials/physiology , Brain/physiology , Computer Simulation , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Animals , Brain Waves/physiology
14.
Stroke Res Treat ; 2013: 170256, 2013.
Article in English | MEDLINE | ID: mdl-23533955

ABSTRACT

Transcranial direct current stimulation (tDCS) is a promising technique to treat a wide range of neurological conditions including stroke. The pathological processes following stroke may provide an exemplary system to investigate how tDCS promotes neuronal plasticity and functional recovery. Changes in synaptic function after stroke, such as reduced excitability, formation of aberrant connections, and deregulated plastic modifications, have been postulated to impede recovery from stroke. However, if tDCS could counteract these negative changes by influencing the system's neurophysiology, it would contribute to the formation of functionally meaningful connections and the maintenance of existing pathways. This paper is aimed at providing a review of underlying mechanisms of tDCS and its application to stroke. In addition, to maximize the effectiveness of tDCS in stroke rehabilitation, future research needs to determine the optimal stimulation protocols and parameters. We discuss how stimulation parameters could be optimized based on electrophysiological activity. In particular, we propose that cortical synchrony may represent a biomarker of tDCS efficacy to indicate communication between affected areas. Understanding the mechanisms by which tDCS affects the neural substrate after stroke and finding ways to optimize tDCS for each patient are key to effective rehabilitation approaches.

15.
Neural Comput ; 24(12): 3213-45, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22970877

ABSTRACT

The brain processes information in a highly parallel manner. Determination of the relationship between neural spikes and synaptic connections plays a key role in the analysis of electrophysiological data. Information geometry (IG) has been proposed as a powerful analysis tool for multiple spike data, providing useful insights into the statistical interactions within a population of neurons. Previous work has demonstrated that IG measures can be used to infer the connection weight between two neurons in a neural network. This property is useful in neuroscience because it provides a way to estimate learning-induced changes in synaptic strengths from extracellular neuronal recordings. A previous study has shown, however, that this property would hold only when inputs to neurons are not correlated. Since neurons in the brain often receive common inputs, this would hinder the application of the IG method to real data. We investigated the two-neuron-IG measures in higher-order log-linear models to overcome this limitation. First, we mathematically showed that the estimation of uniformly connected synaptic weight can be improved by taking into account higher-order log-linear models. Second, we numerically showed that the estimation can be improved for more general asymmetrically connected networks. Considering the estimated number of the synaptic connections in the brain, we showed that the two-neuron IG measure calculated by the fourth- or fifth-order log-linear model would provide an accurate estimation of connection strength within approximately a 10% error. These studies suggest that the two-neuron IG measure with higher-order log-linear expansion is a robust estimator of connection weight even under correlated inputs, providing a useful analytical tool for real multineuronal spike data.


Subject(s)
Brain/physiology , Models, Neurological , Models, Theoretical , Neural Networks, Computer , Animals , Computer Simulation , Humans
16.
Article in English | MEDLINE | ID: mdl-22363267

ABSTRACT

When rodents engage in irregular foraging in an open-field environment, hippocampal principal cells exhibit place-specific firing that is statistically independent of the direction of traverse through the place field. When the path is restricted to a track, however, in-field rates differ substantially in opposite directions. Frequently, the representations of the track in the two directions are essentially orthogonal. We show that this directionally selective firing is not hard-wired, but develops through experience-dependent plasticity. During the rats' first pass in each direction, place fields were highly directionally symmetric, whereas over subsequent laps, the firing rates in the two directions gradually but substantially diverged. We conclude that, even on a restricted track, place cell firing is initially determined by allocentric position, and only later, the within-field firing rates change in response to differential sensory information or behavioral cues in the two directions. In agreement with previous data, place fields near local cues, such as textures on the track, developed less directionality than place fields on a uniform part of the track, possibly because the local cues reduced the net difference in sensory input at a given point. Directionality also developed in an open environment without physical restriction of the animal's path, when rats learned to run along a specified path. In this case, directionality developed later than on the running track, only after the rats began to run in a stereotyped manner. Although the average population firing rates exhibited little if any change over laps in either direction, the direction-specific firing rates in a given place field were up-or down-regulated with about equal probability and magnitude, which was independent in the two directions, suggesting some form of competitive mechanism (e.g., LTP/LTD) acting coherently on the set of synapses conveying external information to each cell.

17.
J Neurosci ; 30(7): 2650-61, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20164349

ABSTRACT

Spontaneous reactivation of previously stored patterns of neural activity occurs in hippocampus and neocortex during non-rapid eye movement (NREM) sleep. Notable features of the neocortical local field potential during NREM sleep are high-amplitude, low-frequency thalamocortical oscillations including K-complexes, low-voltage spindles, and high-voltage spindles. Using combined neuronal ensemble and local field potential recordings, we show that prefrontal stored-trace reactivation is correlated with the density of down-to-up state transitions of the population of simultaneously recorded cells, as well as K-complexes and low-voltage spindles in the local field potential. This result strengthens the connection between reactivation and learning, as these same NREM sleep features have been correlated with memory. Although memory trace reactivation is correlated with low-voltage spindles, it is not correlated with high-voltage spindles, indicating that despite their similar frequency characteristics, these two oscillations serve different functions.


Subject(s)
Memory/physiology , Periodicity , Prefrontal Cortex/physiology , Animals , Behavior, Animal/physiology , Electroencephalography/methods , Male , Medial Forebrain Bundle/physiology , Membrane Potentials/physiology , Neural Pathways , Neurons/physiology , Prefrontal Cortex/cytology , Rats , Rats, Inbred F344 , Regression Analysis , Reward , Signal Processing, Computer-Assisted , Sleep/physiology , Wakefulness/physiology
18.
Neural Comput ; 21(8): 2309-35, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19538092

ABSTRACT

Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience.


Subject(s)
Nerve Net/physiology , Neural Networks, Computer , Neurons/physiology , Animals , Biophysics , Computer Simulation , Neural Pathways/physiology , Nonlinear Dynamics
19.
Science ; 318(5853): 1147-50, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18006749

ABSTRACT

As previously shown in the hippocampus and other brain areas, patterns of firing-rate correlations between neurons in the rat medial prefrontal cortex during a repetitive sequence task were preserved during subsequent sleep, suggesting that waking patterns are reactivated. We found that, during sleep, reactivation of spatiotemporal patterns was coherent across the network and compressed in time by a factor of 6 to 7. Thus, when behavioral constraints are removed, the brain's intrinsic processing speed may be much faster than it is in real time. Given recent evidence implicating the medial prefrontal cortex in retrieval of long-term memories, the observed replay may play a role in the process of memory consolidation.


Subject(s)
Memory/physiology , Prefrontal Cortex/physiology , Sleep/physiology , Animals , Hippocampus/physiology , Male , Rats , Rats, Inbred F344 , Reaction Time
20.
J Neurosci ; 26(42): 10727-42, 2006 Oct 18.
Article in English | MEDLINE | ID: mdl-17050712

ABSTRACT

Replay of behaviorally induced neural activity patterns during subsequent sleep has been suggested to play an important role in memory consolidation. Many previous studies, mostly involving familiar experiences, suggest that such reactivation occurs, but decays quickly (approximately 1 h). Recently, however, long-lasting (up to approximately 48 h) "reverberation" of neural activity patterns induced by a novel experience was reported on the basis of a template-matching analysis. Because detection and quantification of memory-trace replay depends critically on analysis methods, we investigated the statistical properties of the template-matching method and analyzed rodent neural ensemble activity patterns after a novel experience. For comparison, we also analyzed the same data with an independent analysis technique, the explained variance method. Contrary to the recent report, we did not observe significant long-lasting reverberation using either the template matching or the explained variance approaches. The latter, however, did reveal short-lasting reactivation in the hippocampus and prefrontal cortex. In addition, detailed analysis of the template-matching method shows that, in the present study, coarse mean firing rate differences among neurons, but not fine temporal spike structures, dominate the results of template matching. Most importantly, it is also demonstrated that partial comparisons of template-matching correlations, such as used in the recent paper, may lead to erroneous conclusions. These investigations indicate that the outcome of template-matching analysis is very sensitive to the conditions of how it is applied, and should be interpreted cautiously, and that the existence of long-lasting reverberation after a novel experience requires additional verification.


Subject(s)
Action Potentials/physiology , Memory/physiology , Animals , Electrophysiology , Exploratory Behavior/physiology , Hippocampus/physiology , Male , Rats , Rats, Inbred BN , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...