Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 871: 147436, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37075926

ABSTRACT

Enterococcus sp. emerged as an opportunistic nosocomial pathogen with the highest antibiotic resistance and mortality rate. Biofilm is problematic primarily since it is regulated by the global bacterial cell to cell communication mediated by the quorum sensing signaling system. Thus, potential natural antagonists in a novel drug formulation against biofilm-forming Enterococcus faecalis is critical. We used RNA-Seq to evaluate the effects of the novel molecule rhodethrin with chloramphenicol induced on Enterococcus faecalis and DEGs were identified. In transcriptome sequence analysis, a total of 448 with control Vs rhodethrin, 1591 were in control Vs chloramphenicol, 379 genes were DEGs from control Vs synergies, in rhodethrin with chloramphenicol, 379 genes were differentially expressed, whereas 264 genes were significantly downregulated, indicating that 69.69% ofE. faecaliswas altered. The transcriptional sequence data further expression analysis qRT-PCR, and the results shed that the expression profiles of five significant biofilm formation responsible genes such as, Ace, AtpB, lepA, bopD, and typA, 3 genes involved in quorum sensing are sylA, fsrC and camE, and 4 genes involved in resistance were among including liaX, typA, EfrA, and lepA, were significantly suppressed expressions of the biofilm, quorum sensing, and resistance that are supported by transcriptome analysis.


Subject(s)
Biofilms , Quorum Sensing , Quorum Sensing/genetics , Gene Expression Profiling , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/genetics , Chloramphenicol/metabolism , Chloramphenicol/pharmacology , Bacterial Proteins/metabolism
2.
Appl Microbiol Biotechnol ; 106(5-6): 1813-1835, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35254498

ABSTRACT

Microbial enzymes have an indispensable role in producing foods, pharmaceuticals, and other commercial goods. Many novel enzymes have been reported from all domains of life, such as plants, microbes, and animals. Nonetheless, industrially desirable enzymes of microbial origin are limited. This review article discusses the classifications, applications, sources, and challenges of most demanded industrial enzymes such as pectinases, cellulase, lipase, and protease. In addition, the production of novel enzymes through protein engineering technologies such as directed evolution, rational, and de novo design, for the improvement of existing industrial enzymes is also explored. We have also explored the role of metagenomics, nanotechnology, OMICs, and machine learning approaches in the bioprospecting of novel enzymes. Overall, this review covers the basics of biocatalysts in industrial and healthcare applications and provides an overview of existing microbial enzyme optimization tools. KEY POINTS: • Microbial bioactive molecules are vital for therapeutic and industrial applications. • High-throughput OMIC is the most proficient approach for novel enzyme discovery. • Comprehensive databases and efficient machine learning models are the need of the hour to fast forward de novo enzyme design and discovery.


Subject(s)
Bacteria , Bioprospecting , Enzymes , Fungi , Protein Engineering , Animals , Bacteria/enzymology , Biotechnology , Enzymes/metabolism , Fungi/enzymology , Health Care Sector , Industry , Metagenomics
3.
Microb Pathog ; 163: 105401, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35032606

ABSTRACT

The nosocomial pathogen Enterococcus faecalis critically implicated in the hospital environment. Its major virulence attributes biofilm formation and antibiotic resistance. The novel therapeutics are required to inhibit E. faecalis biofilm formation and virulence. Thus combinatorial and drug repurposing has been promising approaches to tackling biofilm-associated infections. Here, we have used a bacterium that produced indole terpenoid Rhodethrin (Rdn) with a combination of known antibiotic chloramphenicol (Chpl) against E. faecalis (ATCC 19433). The fractional inhibitory concentration index (FICI) values showed between 0.25 and 0.33 synergistic activities. The exopolysaccharides (EPSs) production significant decrease with Rdn (34.6 ± 4.6%), Chpl (31.0 ± 5.2%), and combination (Rdn-Chpl) (76.0 ± 4.5%) (p > 0.05). However, the biofilm interruption can attenuate of total biofilm was shown with Rdn (39.7 ± 5.1%), Chpl (32.6 ± 4.7%), and Rdn-Chpl (69.0 ± 5.3%), (p > 0.05). The microscopic observations reveal that the gradually unstructured biofilm architecture in E. faecalis. Furthermore, in silico, studies on biofilm-associated proteins (GelE, LuxS), virulence regulating (SprE), and cell division (FtsZ) have resulted in high and reasonable binding affinity, respectively. Thus, our results suggested that the synergism of Rdn-Chpl has the potential to function as a combinatorial antibiotic accelerates in treating vancomycin-resistant Enterococcus faecalis infections.


Subject(s)
Enterococcus faecalis , Vancomycin-Resistant Enterococci , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Biofilms
4.
Microb Pathog ; 148: 104457, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32828902

ABSTRACT

Enterococcus faecalis is frequently present in the hospital environment and readily forms a biofilm that protects from antibiotics and resistance against environmental stress conditions, thereby increasing nosocomial chronic infections. This study aims to assess antimicrobial and antibiofilm activities of two novel terpenoid derivatives Rhodethrin (Rdn) and Rubrivivaxin (Rbn) against vancomycin resistant Enterococcus faecalis strain (ATCC19443). Both terpenoids effectively prevent biofilm formation with >75% attenuation in cell biomass and significantly decrease the production of exopolysaccharides (EPSs) (p = 0.005) and besides their expansion on different surface media. The findings provide new evidence that such terpenoid derivatives could be developed as novel antibacterial drugs.


Subject(s)
Enterococcus faecalis , Vancomycin-Resistant Enterococci , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Microbial Sensitivity Tests , Vancomycin
SELECTION OF CITATIONS
SEARCH DETAIL
...