Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 594(3): 553-563, 2020 02.
Article in English | MEDLINE | ID: mdl-31598959

ABSTRACT

Quorum-sensing mechanisms regulate gene expression in response to changing cell-population density detected through pheromones. In Enterococcus faecalis, Fsr quorum sensing produces and responds to the gelatinase biosynthesis-activating pheromone (GBAP). Here we establish that the enterococcal FsrB membrane protein has a direct role connected with GBAP by showing that GBAP binds to purified FsrB. Far-UV CD measurements demonstrated a predominantly α-helical protein exhibiting a small level of conformational flexibility. Fivefold (400 µm) GBAP stabilised FsrB (80 µm) secondary structure. FsrB thermal denaturation in the presence and absence of GBAP revealed melting temperatures of 70.1 and 60.8 °C, respectively, demonstrating GBAP interactions and increased thermal stability conferred by GBAP. Addition of GBAP also resulted in tertiary structural changes, confirming GBAP binding.


Subject(s)
Bacterial Proteins/metabolism , Enterococcus faecalis/cytology , Enterococcus faecalis/metabolism , Lactones/metabolism , Lactones/pharmacology , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Quorum Sensing/drug effects , Amino Acid Sequence , Bacterial Proteins/chemistry , Enterococcus faecalis/drug effects , Protein Binding , Protein Conformation, alpha-Helical , Protein Stability/drug effects
2.
Circulation ; 140(6): 500-513, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31163988

ABSTRACT

BACKGROUND: Genome-wide association studies have identified chromosome 14q32 as a locus for coronary artery disease. The disease-associated variants fall in a hitherto uncharacterized gene called HHIPL1 (hedgehog interacting protein-like 1), which encodes a sequence homolog of an antagonist of hedgehog signaling. The function of HHIPL1 and its role in atherosclerosis are unknown. METHODS: HHIPL1 cellular localization, interaction with sonic hedgehog (SHH), and influence on hedgehog signaling were tested. HHIPL1 expression was measured in coronary artery disease-relevant human cells, and protein localization was assessed in wild-type and Apoe-/- (apolipoprotein E deficient) mice. Human aortic smooth muscle cell phenotypes and hedgehog signaling were investigated after gene knockdown. Hhipl1-/- mice were generated and aortic smooth muscle cells collected for phenotypic analysis and assessment of hedgehog signaling activity. Hhipl1-/- mice were bred onto both the Apoe-/- and Ldlr-/- (low-density lipoprotein receptor deficient) knockout strains, and the extent of atherosclerosis was quantified after 12 weeks of high-fat diet. Cellular composition and collagen content of aortic plaques were assessed by immunohistochemistry. RESULTS: In vitro analyses revealed that HHIPL1 is a secreted protein that interacts with SHH and increases hedgehog signaling activity. HHIPL1 expression was detected in human smooth muscle cells and in smooth muscle within atherosclerotic plaques of Apoe-/- mice. The expression of Hhipl1 increased with disease progression in aortic roots of Apoe-/- mice. Proliferation and migration were reduced in Hhipl1 knockout mouse and HHIPL1 knockdown aortic smooth muscle cells, and hedgehog signaling was decreased in HHIPL1-deficient cells. Hhipl1 knockout caused a reduction of >50% in atherosclerosis burden on both Apoe-/- and Ldlr-/- knockout backgrounds, and lesions were characterized by reduced smooth muscle cell content. CONCLUSIONS: HHIPL1 is a secreted proatherogenic protein that enhances hedgehog signaling and regulates smooth muscle cell proliferation and migration. Inhibition of HHIPL1 protein function might offer a novel therapeutic strategy for coronary artery disease.


Subject(s)
Atherosclerosis/genetics , Chromosomes, Human, Pair 14/genetics , Coronary Disease/genetics , Hedgehog Proteins/physiology , Intercellular Signaling Peptides and Proteins/physiology , Animals , Atherosclerosis/pathology , Cell Division , Cell Movement , Cells, Cultured , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout, ApoE , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/pathology , Receptors, LDL/deficiency , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...