Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Toxicol Lett ; 391: 26-31, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048886

ABSTRACT

The bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD. We also compared the efficacy of 30 mg.kg-1 of HI-6 DMS to an equimolar dose of the current in-service oxime P2S and the dichloride salt of HI-6 (HI-6 Cl2). In the treatment of GB or GD poisoning there was no significant difference between the salt forms. The most effective dose of HI-6 DMS in preventing lethality following challenge with GB was 100 mg.kg-1; though protection ratios of at least 25 were obtained at 10 mg.kg-1. Protection against GD was lower, and there was no significant increase in effectiveness of HI-6 DMS doses of 30 or 100 mg.kg-1. For GD, the outcome was improved by the addition of pyridostigmine pre-treatment. These data demonstrate the benefits of HI-6 DMS as a component of nerve agent therapy. © Crown copyright (2023), Dstl.


Subject(s)
Chemical Warfare Agents , Cholinesterase Reactivators , Nerve Agents , Humans , Animals , Guinea Pigs , Nerve Agents/toxicity , Oximes/therapeutic use , Pyridinium Compounds/therapeutic use , Atropine/pharmacology , Atropine/therapeutic use , Cholinesterase Reactivators/therapeutic use , Chemical Warfare Agents/toxicity , Antidotes/pharmacology , Antidotes/therapeutic use
2.
PLoS One ; 18(4): e0284786, 2023.
Article in English | MEDLINE | ID: mdl-37083685

ABSTRACT

Organophosphate intoxication via acetylcholinesterase inhibition executes neurotoxicity via hyper stimulation of acetylcholine receptors. Here, we use the organophosphate paraoxon-ethyl to treat C. elegans and use its impact on pharyngeal pumping as a bio-assay to model poisoning through these neurotoxins. This assay provides a tractable measure of acetylcholine receptor mediated contraction of body wall muscle. Investigation of the time dependence of organophosphate treatment and the genetic determinants of the drug-induced inhibition of pumping highlight mitigating modulation of the effects of paraoxon-ethyl. We identified mutants that reduce acetylcholine receptor function protect against the consequence of intoxication by organophosphates. Data suggests that reorganization of cholinergic signalling is associated with organophosphate poisoning. This reinforces the under investigated potential of using therapeutic approaches which target a modulation of nicotinic acetylcholine receptor function to treat the poisoning effects of this important class of neurotoxins.


Subject(s)
Organophosphate Poisoning , Receptors, Nicotinic , Animals , Organophosphate Poisoning/drug therapy , Paraoxon/therapeutic use , Paraoxon/toxicity , Cholinesterase Inhibitors/therapeutic use , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Acetylcholinesterase/metabolism , Receptors, Nicotinic/genetics , Neurotoxins , Organophosphates/toxicity , Organophosphates/therapeutic use
3.
Toxics ; 10(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35448453

ABSTRACT

The therapeutic efficacy of treatments for acute intoxication with highly toxic organophosphorus compounds, called nerve agents, usually involves determination of LD50 values 24 h after nerve agent challenge without and with a single administration of the treatment. Herein, the LD50 values of four nerve agents (sarin, soman, tabun and cyclosarin) for non-treated and treated intoxication were investigated in mice for experimental end points of 6 and 24 h. The LD50 values of the nerve agents were evaluated by probit-logarithmical analysis of deaths within 6 and 24 h of i.m. challenge of the nerve agent at five different doses, using six mice per dose. The efficiency of atropine alone or atropine in combination with an oxime was practically the same at 6 and 24 h. The therapeutic efficacy of the higher dose of the antinicotinic compound MB327 was slightly higher at the 6 h end point compared to the 24 h end point for soman and tabun intoxication. A higher dose of MB327 increased the therapeutic efficacy of atropine alone for sarin, soman and tabun intoxication, and that of the standard antidotal treatment (atropine and oxime) for sarin and tabun intoxication. The therapeutic efficacy of MB327 was lower than the oxime-based antidotal treatment. To compare the 6 and 24 h end points, the influence of the experimental end point was not observed, with the exception of the higher dose of MB327. In addition, only a negligible beneficial impact of the compound MB327 was observed. Nevertheless, antinicotinics may offer an additional avenue for countering poisoning by nerve agents that are difficult to treat, and synthetic and biological studies towards the development of such novel drugs based on the core bispyridinium structure or other molecular scaffolds should continue.

4.
Sci Rep ; 12(1): 4755, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35306515

ABSTRACT

The IEEE and ICNIRP had specified a maximum permissible exposure for instantaneous peak electric field of 100 kV/m. However, no rationale was given for this limit. A novel exposure system was designed through a detailed process of analytical analysis, numerical modelling and prototype testing. The system consists of a cylindrical re-entrant resonant cavity that can achieve an electric field strength of more than 100 kV/m with an input power of 200 W. The working of the system was evaluated in simulation and experiment in terms of scattering parameters, electric field distributions and specific absorption rate. The system was then used to carry out in-vitro exposures of a human lymphoid cell line (GG0257) to a 1195 MHz signal at 53 dBm peak power and a pulse width of 550 ns at a range of interpulse intervals to identify heating-induced changes in cell viability. The proposed system offers high Q value of 5920 in unloaded condition which was reduced to 57 when loaded with 12 ml of cell culture but still offering 67 kV/m of the field intensity. Using the system for the exposure of GG0257 cells lasting 18 min, interpulse intervals of 11 µs or less caused a reduction in the number of viable cells and a corresponding increase in necrotic cells. For a shorter exposure duration of 6 min, the reduction in cell viability was seen at interpulse intervals of 5.5 µs or less. The designed exposure system is well capable of handling high intensity electric fields. Temperature measurements with a fibre optic probe and temperature sensitive labels showed that changes in viability were associated with temperature increases above 46 °C. This novel exposure system is an efficient means to investigate the possible relationship between peak field intensity and biological effects to provide a rationale behind the maximum exposure limit of 100 kV/m.


Subject(s)
Cell Culture Techniques , Electricity , Cell Survival , Computer Simulation , Electromagnetic Fields , Humans , Temperature
5.
J Biol Chem ; 298(1): 101466, 2022 01.
Article in English | MEDLINE | ID: mdl-34864060

ABSTRACT

Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.


Subject(s)
Caenorhabditis elegans Proteins , Cholinesterase Inhibitors , Feeding Behavior , Neuromuscular Junction , Aldicarb/pharmacology , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cholinesterase Inhibitors/pharmacology , Feeding Behavior/drug effects , Feeding Behavior/physiology , Levamisole/pharmacology , Neuromuscular Junction/drug effects , Neuromuscular Junction/metabolism , Signal Transduction
6.
J Physiol ; 599(24): 5417-5449, 2021 12.
Article in English | MEDLINE | ID: mdl-34748643

ABSTRACT

Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Some survivors develop a severe, acute or delayed myasthenic syndrome. In animal models, similar myasthenia has been associated with increasing plasma concentration of one insecticide solvent metabolite, cyclohexanol. We investigated possible mechanisms using voltage and current recordings from mouse neuromuscular junctions (NMJs) and transfected human cell lines. Cyclohexanol (10-25 mM) reduced endplate potential (EPP) amplitudes by 10-40% and enhanced depression during repetitive (2-20 Hz) stimulation by up to 60%. EPP decay was prolonged more than twofold. Miniature EPPs were attenuated by more than 50%. Cyclohexanol inhibited whole-cell currents recorded from CN21 cells expressing human postjunctional acetylcholine receptors (hnAChR) with an IC50 of 3.74 mM. Cyclohexanol (10-20 mM) also caused prolonged episodes of reduced-current, multi-channel bursting in outside-out patch recordings from hnAChRs expressed in transfected HEK293T cells, reducing charge transfer by more than 50%. Molecular modelling indicated cyclohexanol binding (-6 kcal/mol) to a previously identified alcohol binding site on nicotinic AChR α-subunits. Cyclohexanol also increased quantal content of evoked transmitter release by ∼50%. In perineurial recordings, cyclohexanol selectively inhibited presynaptic K+ currents. Modelling indicated cyclohexanol binding (-3.8 kcal/mol) to voltage-sensitive K+ channels at the same site as tetraethylammonium (TEA). TEA (10 mM) blocked K+ channels more effectively than cyclohexanol but EPPs were more prolonged in 20 mM cyclohexanol. The results explain the pattern of neuromuscular dysfunction following ingestion of organophosphorus insecticides containing cyclohexanol precursors and suggest that cyclohexanol may facilitate investigation of mechanisms regulating synaptic strength at NMJs. KEY POINTS: Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Survivors may develop a severe myasthenic syndrome or paralysis, associated with increased plasma levels of cyclohexanol, an insecticide solvent metabolite. Analysis of synaptic transmission at neuromuscular junctions in isolated mouse skeletal muscle, using isometric tension recording and microelectrode recording of endplate voltages and currents, showed that cyclohexanol reduced postsynaptic sensitivity to acetylcholine neurotransmitter (reduced quantal size) while simultaneously enhancing evoked transmitter release (increased quantal content). Patch recording from transfected cell lines, together with molecular modelling, indicated that cyclohexanol causes selective, allosteric antagonism of postsynaptic nicotinic acetylcholine receptors and block of presynaptic K+ -channel function. The data provide insight into the cellular and molecular mechanisms of neuromuscular weakness following intentional ingestion of agricultural organophosphorus insecticides. Our findings also extend understanding of the effects of alcohols on synaptic transmission and homeostatic synaptic function.


Subject(s)
Cyclohexanols , Neuromuscular Junction , Animals , HEK293 Cells , Humans , Mice , Motor Endplate , Receptors, Cholinergic , Synaptic Transmission
7.
Toxicol Lett ; 340: 114-122, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33482275

ABSTRACT

Organophosphorus nerve agents (NAs) are the most lethal chemical warfare agents and have been used by state and non-state actors since their discovery in the 1930s. They covalently modify acetylcholinesterase, preventing the breakdown of acetylcholine (ACh) with subsequent loss of synaptic transmission, which can result in death. Despite the availability of several antidotes for OPNA exposure, none directly targets the nicotinic acetylcholine receptor (nAChR) mediated component of toxicity. Non-oxime bispyridinium compounds (BPDs) have been shown previously to partially counteract the effects of NAs at skeletal muscle tissue, and this has been attributed to inhibition of the muscle nAChR. Functional data indicate that, by increasing the length of the alkyl linker between the pyridinium moieties of BPDs, the antagonistic activity at nAChRs can be improved. Molecular dynamics simulations of the adult muscle nAChR in the presence of BPDs identified key residues likely to be involved in binding. Subsequent two-electrode voltage clamp recordings showed that one of the residues, εY131, acts as an allosteric determinant of BPD binding, and that longer BPDs have a greater stabilizing effect on the orthosteric loop C than shorter ones. The work reported will inform future design work on novel antidotes for treating NA exposure.


Subject(s)
Antidotes/chemistry , Antidotes/pharmacology , Nerve Agents/toxicity , Nicotinic Antagonists/toxicity , Receptors, Nicotinic/metabolism , Animals , Models, Molecular , Molecular Docking Simulation , Oocytes/metabolism , Protein Conformation , Pyridinium Compounds , Structure-Activity Relationship , Xenopus laevis
8.
Neurotoxicology ; 82: 50-62, 2021 01.
Article in English | MEDLINE | ID: mdl-33176172

ABSTRACT

Inhibition of acetylcholinesterase by either organophosphates or carbamates causes anti-cholinesterase poisoning. This arises through a wide range of neurotoxic effects triggered by the overstimulation of the cholinergic receptors at synapses and neuromuscular junctions. Without intervention, this poisoning can lead to profound toxic effects, including death, and the incomplete efficacy of the current treatments, particularly for oxime-insensitive agents, provokes the need to find better antidotes. Here we show how the non-parasitic nematode Caenorhabditis elegans offers an excellent tool for investigating the acetylcholinesterase intoxication. The C. elegans neuromuscular junctions show a high degree of molecular and functional conservation with the cholinergic transmission that operates in the autonomic, central and neuromuscular synapses in mammals. In fact, the anti-cholinesterase intoxication of the worm's body wall neuromuscular junction has been unprecedented in understanding molecular determinants of cholinergic function in nematodes and other organisms. We extend the use of the model organism's feeding behaviour as a tool to investigate carbamate and organophosphate mode of action. We show that inhibition of the cholinergic-dependent rhythmic pumping of the pharyngeal muscle correlates with the inhibition of the acetylcholinesterase activity caused by aldicarb, paraoxons and DFP exposure. Further, this bio-assay allows one to address oxime dependent reversal of cholinesterase inhibition in the context of whole organism recovery. Interestingly, the recovery of the pharyngeal function after such anti-cholinesterase poisoning represents a sensitive and easily quantifiable phenotype that is indicative of the spontaneous recovery or irreversible modification of the worm acetylcholinesterase after inhibition. These observations highlight the pharynx of C. elegans as a new tractable approach to explore anti-cholinesterase intoxication and recovery with the potential to resolve critical genetic determinants of these neurotoxins' mode of action.


Subject(s)
Antidotes/therapeutic use , Biological Assay/methods , Caenorhabditis elegans/drug effects , Cholinesterase Inhibitors/poisoning , Pharynx/drug effects , Aldicarb/pharmacology , Animals , Organophosphate Poisoning/diagnosis , Pharynx/physiology
9.
Toxicol Mech Methods ; 30(9): 703-710, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32878547

ABSTRACT

Therapeutic efficacy of antidotal treatment of acute poisoning by nerve agents is generally assessed by the evaluation of LD50 values of nerve agents over 24 h following poisoning without or with a single administration of antidotal treatment. In this study, LD50 values of four nerve agents (sarin, soman, tabun and cyclosarin) for non-treated and treated poisoning were evaluated in mice for two experimental end points - 6 h and 24 h. While the efficacy of atropine or oxime-based antidotal treatment was the same regardless of the experimental end point, the therapeutic efficacy of all three newly developed bispyridinium non-oxime compounds (MB408, MB442, and MB444) was mostly slightly higher at the 6 h end point compared to the 24 h end point, although the therapeutic efficacy of MB compounds was not superior to oxime-based antidotal treatment. These results contrast with a study in guinea-pigs using a structurally-related compound, MB327, which showed a striking increase in protection at 6 h compared to 24 h. It is suggested that the disparity may be due to pharmacokinetic differences between the two animal species.


Subject(s)
Antidotes/pharmacology , Chemical Warfare Agents/toxicity , Cholinesterase Reactivators/pharmacology , Nicotinic Antagonists/pharmacology , Organophosphate Poisoning/drug therapy , Animals , Lethal Dose 50 , Male , Mice , Organophosphate Poisoning/etiology , Organophosphates/toxicity , Organophosphorus Compounds/toxicity , Oximes/pharmacology , Pyridinium Compounds/pharmacology , Sarin/toxicity , Soman/toxicity , Time Factors
10.
Toxicol Lett ; 325: 67-76, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32017982

ABSTRACT

Racemic 3-quinuclidinyl-α-methoxydiphenylacetate (MB266) was synthesised. Its activity at muscarinic acetylcholine receptors (mAChRs), and muscle and neuronal nicotinic acetylcholine receptors (nAChRs), was compared to that of atropine and racemic 3-quinucidinyl benzilate (QNB) using a functional assay based on agonist-induced elevation of intracellular calcium ion concentration in CN21, Chinese Hamster Ovary (CHO) and SHSY5Y human cell lines. MB266 acted as an antagonist at acetylcholine receptors, displaying 18-fold selectivity for mAChR versus nAChR (compared to the 15,200-fold selectivity observed for QNB). Thus O-methylation of QNB reduced the affinity for mAChR antagonism and increased the relative potency at both muscle and neuronal nAChRs. Despite MB266 having a pharmacological profile potentially useful for the treatment of anticholinesterase poisoning, its administration did not improve the neuromuscular function in a soman-poisoned guinea-pig diaphragm preparation pretreated with the organophosphorus nerve agent soman. Consideration should be given to exploring the potential of MB266 for possible anticonvulsant action in vitro as part of a multi-targeted ligand approach.


Subject(s)
Antidotes/pharmacology , Antidotes/therapeutic use , Cholinesterase Inhibitors/poisoning , Muscarinic Antagonists/pharmacology , Muscarinic Antagonists/therapeutic use , Nerve Agents/poisoning , Nicotinic Antagonists/pharmacology , Nicotinic Antagonists/therapeutic use , Animals , Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Antidotes/chemical synthesis , CHO Cells , Cell Line , Cricetinae , Cricetulus , Diaphragm/drug effects , Guinea Pigs , Humans , In Vitro Techniques , Male , Muscarinic Antagonists/chemical synthesis , Muscle, Skeletal/drug effects , Neurons/drug effects , Nicotinic Antagonists/chemical synthesis , Seizures/chemically induced , Seizures/prevention & control , Soman/poisoning
11.
Toxicology ; 408: 95-100, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30005893

ABSTRACT

The effect of three newly developed bispyridinium non-oxime compounds (MB408, MB442, and MB444) on the therapeutic efficacy of a standard antidotal treatment (atropine in combination with the oxime HI-6 or obidoxime) of acute poisoning by two nerve agents (sarin and cyclosarin) in mice was studied. The therapeutic efficacy of atropine in combination with an oxime with or without one of the bispyridinium non-oximes was evaluated by determination of the 24 h LD50 values of the nerve agents studied and by measurement of the survival time after supralethal poisoning. Addition of all tested non-oximes increased the therapeutic efficacy of atropine in combination with an oxime against sarin poisoning; however, the differences were not significant. The non-oximes also positively influenced the number of surviving mice 6 h after supralethal poisoning with sarin. In the case of cyclosarin, they were also slightly beneficial in the treatment of acute poisoning. The higher dose of MB444 was able to significantly increase the therapeutic efficacy of standard antidotal treatment of poisoning with cyclosarin. The benefit of each bispyridinium non-oxime compound itself was obviously dose-dependent. In summary, the addition of MB compounds to the standard antidotal treatment of acute nerve agent poisoning was beneficial for the antidotal treatment of sarin or cyclosarin poisoning, although their benefit at 24 h after poisoning was not significant, with the exception of the higher dose of MB444 against cyclosarin.


Subject(s)
Atropine/pharmacology , Obidoxime Chloride/pharmacology , Organophosphate Poisoning/drug therapy , Organophosphorus Compounds , Oximes/pharmacology , Pyridinium Compounds/pharmacology , Sarin , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy, Combination , Lethal Dose 50 , Male , Mice , Time Factors
12.
Basic Clin Pharmacol Toxicol ; 122(4): 429-435, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29117635

ABSTRACT

The influence of three newly developed bispyridinium antinicotinic compounds (the non-oximes MB408, MB442 and MB444) on the therapeutic efficacy of a standard antidotal treatment (atropine in combination with an oxime) of acute poisoning by the organophosphorus nerve agents tabun and soman was studied in mice. The therapeutic efficacy of atropine in combination with an oxime with or without one of the bispyridinium non-oximes was evaluated by determination of the LD50 values of the nerve agents and measurement of the survival time after supralethal poisoning. Addition of all the tested non-oximes increased significantly the therapeutic efficacy of atropine in combination with an oxime against tabun poisoning. They also positively influenced the number of surviving mice 6 hr after supralethal poisoning with tabun. However, they were only slightly effective for the treatment of soman poisoning. The benefit of the tested bispyridinium non-oximes was dose-dependent. To conclude, the addition of bispyridinium non-oximes to the standard antidotal treatment of acute poisoning with tabun was beneficial regardless of the chosen non-oxime, but only slightly beneficial in the case of soman poisoning.


Subject(s)
Antidotes/therapeutic use , Nerve Agents/poisoning , Nicotinic Agonists/pharmacology , Organophosphate Poisoning/drug therapy , Pyridinium Compounds/therapeutic use , Animals , Antidotes/chemical synthesis , Antidotes/pharmacology , Atropine/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Synergism , Drug Therapy, Combination , Humans , Lethal Dose 50 , Male , Mice , Nicotinic Agonists/chemical synthesis , Organophosphate Poisoning/etiology , Organophosphates/toxicity , Oximes/pharmacology , Pyridinium Compounds/chemical synthesis , Pyridinium Compounds/pharmacology , Soman/poisoning , Treatment Outcome
13.
Neurotoxicology ; 57: 174-182, 2016 12.
Article in English | MEDLINE | ID: mdl-27693445

ABSTRACT

Pre-treatment with reversible acetylcholinesterase (AChE) inhibitors is an effective strategy for reducing lethality following organophosphate nerve agent exposure. AChE inhibition may have unwanted cardiac side effects, which could be negated by adjunctive anti-cholinergic therapy. The aims of the present study were to examine the concentration-dependent effects of physostigmine on cardiac responses to vagus nerve stimulation (VNS), to test whether adjunctive treatment with hyoscine can reverse these effects and to assess the functional interaction and electrophysiological consequences of a combined pre-treatment. Studies were performed in an isolated innervated rabbit heart preparation. The reduction in heart rate with VNS was augmented by physostigmine (1-1000nmol/L), in a concentration-dependent manner - with an EC50 of 19nmol/L. Hyoscine was shown to be effective at blocking the cardiac responses to VNS with an IC50 of 11nmol/L. With concomitant perfusion of physostigmine, the concentration-response curve for hyoscine was shifted downward and to the right, increasing the concentration of hyoscine required to normalise (to control values) the effects of physostigmine on heart rate. At the lowest concentration of hyoscine examined (1nmol/L) a modest potentiation of heart rate response to VNS (+15±3%) was observed. We found no evidence of cardiac dysfunction or severe electrophysiological abnormalities with either physostigmine or hyoscine alone, or as a combined drug-therapy. The main finding of this study is that hyoscine, at concentrations greater than 10-8M, is effective at reversing the functional effects of physostigmine on the heart. However, low-concentrations of hyoscine may augment cardiac parasympathetic control.


Subject(s)
Cholinesterase Inhibitors/therapeutic use , Heart Rate/drug effects , Muscarinic Antagonists/pharmacology , Physostigmine/therapeutic use , Scopolamine/pharmacology , Vagus Nerve Stimulation/methods , Animals , Dose-Response Relationship, Drug , Drug Combinations , Heart/drug effects , Heart/physiology , In Vitro Techniques , Rabbits
14.
Chem Biol Interact ; 259(Pt B): 175-181, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27144491

ABSTRACT

The provision of effective Medical Countermeasures (MedCM) for all agents and routes of exposure is a strategic goal of defence research and development. In the case of military autoinjector-based therapies for nerve agent poisoning, current treatment effectiveness is limited by the oxime reactivator being effective against only certain agents, by rapid clearance times of the drugs and because the doses may not be optimal for treatment of severe poisoning. Prolonged poisoning by nerve agents entering the body through the skin is also challenging. Since casualty handling timelines have reduced significantly in recent years, it may be sufficient for first aid therapy to provide protection for only a few hours until further medical treatment is available. Therefore, the traditional evaluation of first aid therapy in animal models of survival at 24 h may not be appropriate. At various echelons of medical care, further therapeutic interventions are possible. The current basis for the medical management of nerve-agent poisoned casualties is derived mainly from clinical experience with pesticide poisoning. Adjunct therapy with a bioscavenger (such as human butyrylcholinesterase (huBChE)), could have utility as a delayed intervention by reducing the toxic load. It has previously been demonstrated that huBChE is an effective post-exposure therapy against percutaneous VX poisoning. It is recommended that the scope of animal models of nerve agent MedCM are extended to cover evaluation of both first aid MedCM over significantly reduced timescales, and subsequent supportive therapeutic and medical management strategies over longer timescales. In addition to bioscavengers, these strategies could include repeated combined and individual therapy drugs to alleviate symptoms, other classes of drugs or ventilatory support. Crown Copyright © [2016] Published by Elsevier Ireland Ltd. This is an open access article under the Open Government Licence (OGL) (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).


Subject(s)
Butyrylcholinesterase/administration & dosage , Cholinesterase Reactivators/therapeutic use , Nerve Agents/poisoning , Organophosphate Poisoning/therapy , Animals , Atropine/therapeutic use , Butyrylcholinesterase/blood , Chemical Warfare Agents/poisoning , First Aid , Guinea Pigs , Humans , Military Medicine , Organothiophosphorus Compounds/poisoning
15.
Toxicol Mech Methods ; 26(5): 334-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27097774

ABSTRACT

The potency of the bispyridinium non-oxime compound MB327 [1,1'-(propane-1,3-diyl)bis(4-tert-butylpyridinium) diiodide] to increase the therapeutic efficacy of the standard antidotal treatment (atropine in combination with an oxime) of acute poisoning with organophosphorus nerve agents was studied in vivo. The therapeutic efficacy of atropine alone - or atropine in combination with an oxime, MB327, or both an oxime and MB237 - was evaluated by the determination of LD50 values of several nerve agents (tabun, sarin and soman) in mice with and without treatment. The addition of MB327 increased the therapeutic efficacy of atropine alone, and atropine in combination with an oxime, against all three nerve agents, although differences in the LD50 values only reached statistical significance for sarin. In conclusion, the addition of the compound MB327 to the standard antidotal treatment of acute poisonings with nerve agents was beneficial regardless of the chemical structure of the nerve agent, although at the dose employed, MB327 in combination with atropine, or atropine and an oxime, provided only a modest increase in protection ratio. These results from mice, and previous ones from guinea-pigs, provide consistent evidence for additional, albeit modest, efficacy resulting from the inclusion of the antinicotinic compound MB327 in standard antidotal therapy. Given the typically steep probit slope for the dose-lethality relationship for nerve agents, such modest increases in protection ratio could provide significant survival benefit.


Subject(s)
Antidotes/therapeutic use , Atropine/therapeutic use , Nerve Agents/poisoning , Oximes/therapeutic use , Pyridinium Compounds/therapeutic use , Animals , Antidotes/administration & dosage , Antidotes/toxicity , Atropine/administration & dosage , Atropine/toxicity , Drug Therapy, Combination , Lethal Dose 50 , Male , Mice, Inbred Strains , Molecular Structure , Oximes/administration & dosage , Oximes/toxicity , Poisoning/drug therapy , Pyridinium Compounds/administration & dosage , Pyridinium Compounds/chemical synthesis , Pyridinium Compounds/toxicity
16.
Toxicol Lett ; 244: 154-160, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26325216

ABSTRACT

Current organophosphorus nerve agent medical countermeasures do not directly address the nicotinic effects of poisoning. A series of antinicotinic bispyridinium compounds has been synthesized in our laboratory and screened in vitro. Their actions can include open-channel block at the nicotinic receptor which may contribute to their efficacy. The current lead compound from these studies, MB327 1,1'-(propane-1,3-diyl)bis(4-tert-butylpyridinium) as either the diiodide (I2) or dimethanesulfonate (DMS) has been examined in vivo for efficacy against nerve agent poisoning. MB327 I2 (0-113mgkg(-1)) or the oxime HI-6 DMS (0-100mgkg(- 1)), in combination with atropine and avizafone (each at 3mgkg(-1)) was administered to guinea-pigs 1min following soman poisoning. Treatment increased the LD50 of soman in a dose-dependent manner. The increase was statistically significant (p<0.01) at the 33.9mgkg(-1) (MB327) or 30mgkg(-1) (HI-6) dose with a comparable degree of protection obtained for both compounds. Following administration of 10mgkg(-1) (i.m.), MB327 DMS reached plasma Cmax of 22µM at 12min with an elimination t1/2 of 22min. In an adverse effect study, in the absence of nerve agent poisoning, a dose of 100mgkg(-1) or higher of MB327 DMS was lethal to the guinea-pigs. A lower dose of MB327 DMS (30mgkg(-1)) caused flaccid paralysis accompanied by respiratory impairment. Respiration normalised by 30min, although the animals remained incapacitated to 4h. MB327 or related compounds may be of utility in treatment of nerve agent poisoning as a component of therapy with atropine, anticonvulsant and oxime, or alternatively as an infusion under medical supervision.


Subject(s)
Antidotes/pharmacokinetics , Nerve Agents , Nicotinic Antagonists/pharmacokinetics , Poisoning/drug therapy , Pyridinium Compounds/pharmacokinetics , Soman , Animals , Anticonvulsants/administration & dosage , Antidotes/administration & dosage , Antidotes/toxicity , Atropine/administration & dosage , Dipeptides/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy, Combination , Guinea Pigs , Lethal Dose 50 , Male , Muscarinic Antagonists/administration & dosage , Nicotinic Antagonists/administration & dosage , Nicotinic Antagonists/blood , Nicotinic Antagonists/toxicity , Poisoning/blood , Poisoning/diagnosis , Poisoning/physiopathology , Pyridinium Compounds/administration & dosage , Pyridinium Compounds/blood , Pyridinium Compounds/toxicity
17.
PLoS One ; 10(8): e0135811, 2015.
Article in English | MEDLINE | ID: mdl-26274808

ABSTRACT

Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.


Subject(s)
Muscle, Skeletal/metabolism , Neurons/metabolism , Organophosphate Poisoning/metabolism , Organophosphorus Compounds/toxicity , Pyridinium Compounds/toxicity , Receptors, Nicotinic/metabolism , Acetylcholinesterase/metabolism , Animals , Calcium Signaling/drug effects , Cell Line , Guinea Pigs , Humans , Muscle, Skeletal/pathology , Neurons/pathology
18.
Chem Biol Interact ; 203(1): 160-6, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-22981459

ABSTRACT

Potent organophosphorous (OP) agents, such as VX, are hazardous by absorption through the skin and are resistant to conventional pharmacological antidotal treatments. The residence time of a stoichiometric bioscavenger, human butyrylcholinesterase (huBuChE), in the plasma more closely matches that of VX than do the residence times of conventional therapy drugs (oxime, anti-muscarinic, anticonvulsant). Intramuscular (i.m.) huBuChE afforded almost complete protection when administered prior to the onset of observable cholinergic signs of VX poisoning, but once signs of poisoning became evident the efficacy of i.m. huBuChE decreased. A combination of nerve agent therapy drugs (oxime, anti-muscarinic, anticonvulsant) with huBuChE (i.m.) protected 100% (8/8) of guinea-pigs from a lethal dose of VX (0.74 mg/kg) to 48 h, even when administered on signs of poisoning. Survival was presumed to be due to immediate alleviation of the cholinergic crisis by the conventional pharmacological treatment drugs, in conjunction with bioscavenger that prevented further absorbed agent reaching the AChE targets. Evidence to support this proposed mechanism of action was obtained from PKPD experiments in which multiple blood samples and microdialysate samples were collected from individual conscious ambulatory animals. Plasma concentrations of intramuscularly-administered atropine, diazepam and HI-6 reached a peak within 15 min and were eliminated rapidly within 4h. Plasma concentrations of huBuChE administered by the i.m. route took approximately 24h to reach a peak, but were well-maintained over the subsequent 7days. Thus, the pharmacological therapy rapidly treated the initial signs of poisoning, whilst the bioscavenger provided prolonged protection by neutralising further nerve agent entering the bloodstream and preventing it from reaching the target organs.


Subject(s)
Butyrylcholinesterase/blood , Butyrylcholinesterase/therapeutic use , Chemical Warfare Agents/poisoning , Organophosphate Poisoning/therapy , Acetylcholinesterase/blood , Animals , Antidotes/administration & dosage , Atropine/administration & dosage , Butyrylcholinesterase/administration & dosage , Cholinesterase Reactivators/administration & dosage , Diazepam/administration & dosage , Guinea Pigs , Humans , Injections, Intramuscular , Male , Organophosphate Poisoning/blood , Organothiophosphorus Compounds/poisoning , Oximes/administration & dosage , Pyridinium Compounds/administration & dosage
19.
Front Biosci (Landmark Ed) ; 14(10): 3688-711, 2009 01 01.
Article in English | MEDLINE | ID: mdl-19273303

ABSTRACT

Electrographic seizures are a feature of organophosphate anticholinesterase intoxication. Clinical studies of pesticide poisonings suggest that seizures are more common in children than in adults. Since flaccid paralysis, a characteristic sign of organophosphate poisoning, can mask convulsions, the most reliable indicator of seizures is the electroencephalogram, but this has not been widely used in clinical studies. Seizures can rapidly progress to status epilepticus, contributing to mortality and, in survivors, to neuronal damage and neurological impairment. Anticonvulsant drugs can significantly reduce the lethal and toxic effects of these compounds. A benzodiazepine, usually diazepam, is the treatment currently indicated for control of seizures. Animal studies have indicated that the early phase of seizure activity (0-5 min after seizure onset) is purely cholinergic, predominantly involving muscarinic mechanisms. Seizure activity subsequently progresses through mixed cholinergic and noncholinergic modulation (5-40 min) into a final noncholinergic phase. Neuropathology caused by seizures is most likely associated with glutamatergic excitotoxicity. Future prospects for improved treatments include new benzodiazepines, glutamate receptor antagonists, antimuscarinics with additional antiglutamatergic activity and adenosine receptor antagonists.


Subject(s)
Organophosphorus Compounds/toxicity , Seizures/chemically induced , Animals , Disease Models, Animal , Seizures/pathology
20.
Naunyn Schmiedebergs Arch Pharmacol ; 373(3): 230-6, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16736160

ABSTRACT

The enzyme atropinesterase (EC 3.1.1.10) causes the rapid hydrolysis of tropane alkaloids such as atropine and scopolamine. This enzyme is known to occur in a certain proportion of rabbits and some plants, although its presence in other animal species remains controversial. The potential presence in some animals but not others of an enzyme which can rapidly hydrolyse compounds such as atropine is a potential unwanted experimental variable in many experiments. Because of the uncertainty surrounding the enzyme and the paucity of data, it was decided to examine whether we could detect and characterise atropinesterase activity in the plasma of dogs, goats, guinea-pigs, humans, pigs, rabbits and rhesus by separating and quantitating the substrate (atropine) and one of the products (tropic acid) by high performance liquid chromatography (HPLC). It was found that plasma from some but not all rabbits possessed a capacity to breakdown large quantities of atropine; an effect that was apparently enantiomer-specific. Plasma from other rabbits, and plasma from all other species investigated, proved capable of hydrolysing atropine at a rate exceeding that of non-specific breakdown. It remains to be determined whether this effect is due to a low expression of atropinesterase or an alternative hydrolysing enzyme.


Subject(s)
Carboxylic Ester Hydrolases/blood , Carboxylic Ester Hydrolases/metabolism , Animals , Atropine/metabolism , Chromatography, High Pressure Liquid , Humans , Hydrolysis , Indicator Dilution Techniques , Phenylpropionates/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...