Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 312: 114881, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35306419

ABSTRACT

Climate induced changes in runoff regimes and ongoing anthropogenic modification of land use and land cover (LULC) are shifting ambient water quality signals worldwide. Modulation of these signals by the physical catchment structure over different scales adds complexity to interpreting and analyzing measured data. Further bias may be introduced where monitoring networks are not representative of the structure of catchments in a given region. Here, we present a new environmental regionalization method to assess the representativeness of water quality monitoring (WQM) networks and to identify key structural drivers linked to water quality signals. Unique numerical codes were generated at the pixel level to provide wall-to-wall coverage of key Catchment Structural Units (CSUs) based on LULC, surficial geology, wetlands and slope. CSU codes were generated for all tributary (AT) catchments >20 km2 in Southern Alberta (n = 289), Canada, to determine the representativeness of an existing WQM network (54 tributary catchments) and to assess the explanatory power of CSUs with respect to water quality signals. Cluster analysis (CA) and multi-dimensional scaling (MDS) on the percent area of CSUs in the AT catchments identified six primary structural clusters in Southern Alberta. A clear gradient in catchment structure was evident progressing downstream from the Rocky Mountain headwaters through the foothills and prairie/plains region. Montane and grassland regions were found to be potentially under-represented by the current WQM program whereas catchments dominated by agriculture were likely over-represented. The disproportionate impact of specific CSU combinations on water quality was illustrated where the CA and MDS analyses indicated that even small percentages of urban areas and badland type topography results in elevated concentrations of total recoverable metals, nutrients and major ions. The application of the CSU approach in Southern Alberta demonstrates its value as an alternative method to assess and/or redesign existing WQM networks and to link water quality data to the structural composition of catchments. The general availability of the required data to generate CSUs provides universal potential for the approach to help assess other WQM programs and to contextualize data records. Applying the CSU approach when developing new ambient WQM networks can also help reduce the potential of over-monitoring similarly structured catchments as well as ensuring that all structural classes are represented by the data being generated.


Subject(s)
Environmental Monitoring , Water Quality , Agriculture , Alberta , Wetlands
2.
Water Res ; 183: 116071, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32717650

ABSTRACT

Wildfires can have severe and lasting impacts on the water quality of aquatic ecosystems. However, our understanding of these impacts is founded primarily from studies of small watersheds with well-connected runoff regimes. Despite the predominance of large, low-relief rivers across the fire-prone Boreal forest, it is unclear to what extent and duration wildfire-related material (e.g., ash) can be observed within these systems that typically buffer upstream disturbance signals. Following the devastating 2016 Fort McMurray wildfire in western Canada, we initiated a multi-faceted water quality monitoring program that suggested brief (hours to days) wildfire signatures could be detected in several large river systems, particularly following rainfall events greater than 10 mm. Continuous monitoring of flow and water quality showed distinct, precipitation-associated signatures of ash transport in rivers draining expansive (800-100,000 km2) and partially-burned (<1-22 percent burned) watersheds, which were not evident in nearby unburned regions. Yields of suspended sediment, nutrients (nitrogen, phosphorus) and metals (lead, others) from impacted rivers were 1.2-10 times greater than from those draining unburned regions. Post-fire suspended sediment concentrations in impacted rivers were often larger than pre-fire 95% prediction intervals based on several years of water sampling. These multiple lines of evidence indicate that low-relief landscapes can mobilize wildfire-related material to rivers similarly, though less-intensively and over shorter durations, than headwater regions. We propose that uneven mixing of heavily-impacted tributaries with high-order rivers may partially explain detection of wildfire signals in these large systems that may impact downstream water users.


Subject(s)
Water Quality , Wildfires , Canada , Ecosystem , Rivers
3.
Sci Total Environ ; 657: 717-730, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30677937

ABSTRACT

Nutrient dynamics in a 25 km long treated wastewater effluent impacted reach of a large, gravel-bed river were evaluated in five river compartments: surficial sediment, surface water, hyporheic zone water, and aquatic biomass (including epilithic algae and macrophytes). Nutrient storage within, and export from, the river reach, was quantified to assess the impact of WWTP effluent on nutrient dynamics. More than 98% of N and P storage was found in the surficial river bed sediment, where it is available to support epilithic algal and macrophyte growth. Nutrient export from the river reach by sediment, hyporheic water, and biomass were small compared to water column transport. The N:P ratios for the five different compartments suggested that the water column was severely P limited, whereas sediment, hyporheic water, and aquatic biomass tended towards co-limitation and N limitation. Within the river reach, the majority of P was stored immediately downstream of the WWTP effluent outfall, whereas N was retained at a higher rate relative to P in the remainder of the reach. Correlation analysis of nutrient exchange between different compartments suggested that multiple nutrient compartments should be considered when establishing nutrient loading criteria. Nutrient analysis in multiple compartments in the river can add valuable insight into nutrient dynamics and nutrient limitation.


Subject(s)
Geologic Sediments/analysis , Nitrogen/analysis , Phosphorus/analysis , Rivers , Alberta , Cities , Ecological Parameter Monitoring , Plants , Spatio-Temporal Analysis , Waste Disposal, Fluid
4.
Environ Monit Assess ; 188(8): 494, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27473108

ABSTRACT

The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.


Subject(s)
Environmental Monitoring/methods , Nitrogen/analysis , Phosphorus/analysis , Rivers/chemistry , Seaweed/growth & development , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Alberta , Ammonia/analysis , Aquatic Organisms/growth & development , Biomass , Nitrates/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...