Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; 53(21): 8926-8933, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38687172

ABSTRACT

A pair of novel chiral Zn(II) complexes coordinated by Schiff-base type ligands derived from BINOL (1,1'-bi-2-naphthol), R-/S-Zn, were synthesized. X-ray crystallography revealed the presence of two crystallographically independent complexes; one has a distorted trigonal-bipyramidal structure coordinated by two binaphthyl ligands and one disordered methanol molecule (molecule A), while the other has a distorted tetrahedral structure coordinated by two binaphthyl ligands (molecule B). Numerous CH⋯π and CH⋯O interactions were identified, contributing to the formation of a 3-dimensional rigid network structure. Both R-/S-Zn exhibited fluorescence in both CH2Cl2 solutions and powder samples, with the photoluminescence quantum yields (PLQYs) of powder samples being twice as large as those in solutions, indicating aggregation-induced enhanced emission (AIEE). The AIEE properties were attributed to the restraint of the molecular motion arising from the 3-dimensional intermolecular interactions. CD and CPL spectra were observed for R-/S-Zn in both solutions and powders. The dissymmetry factors, gabs and gCPL values, were within the order of 10-3 to 10-4 magnitudes, comparable to those reported for chiral Zn(II) complexes in previous studies.

2.
Chem Commun (Camb) ; 59(27): 4004-4007, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36917013

ABSTRACT

A pair of chiral Pt(II) complexes coordinated by simple BINOL and bipyridine ligands displaying aggregation-induced phosphorescence and circularly polarized luminescence were characterized by X-ray crystallography and absorption and emission spectroscopies. The emission of the powder sample was reddish whereas the thin film dispersed in PMMA (fPf = 1 wt%) exhibited a white emission.

SELECTION OF CITATIONS
SEARCH DETAIL