Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 23(1): 166, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840157

ABSTRACT

BACKGROUND: Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS: In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION: In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.


Subject(s)
Disulfides , Escherichia coli , Peptides , Periplasm , Escherichia coli/metabolism , Escherichia coli/genetics , Periplasm/metabolism , Disulfides/metabolism , Peptides/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Aprotinin/metabolism , Aprotinin/genetics
2.
Microb Cell Fact ; 23(1): 14, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183013

ABSTRACT

BACKGROUND: Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS: Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS: Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.


Subject(s)
Escherichia coli , Escherichia coli/genetics , RNA-Seq , Sequence Analysis, RNA , Recombinant Proteins , Gene Expression
3.
Heliyon ; 9(12): e22463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046162

ABSTRACT

Functionalization of proteins by incorporating reactive non-canonical amino acids (ncAAs) has been widely applied for numerous biological and therapeutic applications. The requirement not to lose the intrinsic properties of these proteins is often underestimated and not considered. Main purpose of this study was to answer the question whether functionalization via residue-specific incorporation of the ncAA N6-[(2-Azidoethoxy) carbonyl]-l-lysine (Azk) influences the properties of the anti-tumor-necrosis-factor-α-Fab (FTN2). Therefore, FTN2Azk variants with different Azk incorporation sites were designed and amber codon suppression was used for production. The functionalized FTN2Azk variants were efficiently produced in fed-batch like µ-bioreactor cultivations in the periplasm of E. coli displaying correct structure and antigen binding affinities comparable to those of wild-type FTN2. Our FTN2Azk variants with reactive handles for diverse conjugates enable tracking of recombinant protein in the production cell, pharmacological studies and translation into new pharmaceutical applications.

4.
EBioMedicine ; 67: 103348, 2021 May.
Article in English | MEDLINE | ID: mdl-33906067

ABSTRACT

BACKGROUND: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. METHODS: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. FINDINGS: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. INTERPRETATION: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms. FUNDING: WWTF, Project No. COV20-016; BOKU, LBI/LBG.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Binding Sites , CHO Cells , COVID-19/immunology , Cricetulus , Early Diagnosis , HEK293 Cells , Humans , Immunoglobulin G/blood , Middle Aged , Sensitivity and Specificity , Young Adult
5.
Sci Rep ; 10(1): 16510, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020519

ABSTRACT

Genome-based Escherichia coli expression systems are superior to conventional plasmid-based systems as the metabolic load triggered by recombinant compounds is significantly reduced. The efficiency of T7-based transcription compensates for low gene dosage (single copy) and facilitates high product formation rates. While common Gene Bridges' λ-red mediated recombination technique for site directed integration of genes into the host genome is very efficient, selection for positive clones is based on antibiotic resistance markers and removal thereof is often time consuming. For the generation of industrial production strains, flexibility in terms of integration site is not required, yet time from gene design to a stable clone is a quite relevant parameter. In this study, we developed a fast, efficient and antibiotic-free integration method for E. coli as production strain. We combined the λ-red recombination system with the site-directed homing endonuclease I from Saccharaomyces cerevisiae (I-SceI) for selection. In a first step, λ-red proteins are performing genome integration of a linear, antibiotic marker-free integration cassette. The engineered host strain carries the I-SceI restriction sequence at the attTn7 site, where the integration event happens. After homologous recombination and integration at the target site, site-specific genome cleavage by endonuclease I-SceI is induced, thereby killing all cells still containing an intact I-SceI site. In case of positive recombination events, the genomic I-SceI site is deleted and cleavage is no longer possible. Since plasmids are designed to contain another I-SceI restriction site they are destroyed by self-cleavage, a procedure replacing the time-consuming plasmid curing. The new plasmid-based "All-In-One" genome integration method facilitates significantly accelerated generation of genome-integrated production strains in 4 steps.


Subject(s)
Escherichia coli/genetics , Genetic Engineering/methods , Homologous Recombination/genetics , Anti-Bacterial Agents , Base Sequence , Chromosomes/metabolism , Deoxyribonuclease I/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Genetic Vectors/genetics , Plasmids/genetics , Recombination, Genetic/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
6.
Biotechnol Prog ; 36(5): e2999, 2020 09.
Article in English | MEDLINE | ID: mdl-32259401

ABSTRACT

In this work, we attempted to identify a method for the selective extraction of periplasmic endogenously expressed proteins, which is applicable at an industrial scale. For this purpose, we used an expression model that allows coexpression of two fluorescent proteins, each of which is specifically targeted to either the cytoplasm or periplasm. We assessed a number of scalable lysis methods (high-pressure homogenization, osmotic shock procedures, extraction with ethylenediaminetetraacetic acid, and extraction with deoxycholate) for the ability to selectively extract periplasmic proteins rather than cytoplasmic proteins. Our main conclusion was that although we identified industrially scalable lysis conditions that significantly increased the starting purity for further purification, none of the tested conditions were selective for periplasmic protein over cytoplasmic protein. Furthermore, we demonstrated that efficient extraction of the expressed recombinant proteins was largely dependent on the overall protein concentration in the cell.


Subject(s)
Detergents/chemistry , Periplasmic Proteins , Recombinant Proteins , Cell Fractionation , Escherichia coli , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Osmotic Pressure , Periplasmic Proteins/analysis , Periplasmic Proteins/isolation & purification , Periplasmic Proteins/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
7.
Microb Cell Fact ; 19(1): 58, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32138729

ABSTRACT

BACKGROUND: The genome-integrated T7 expression system offers significant advantages, in terms of productivity and product quality, even when expressing the gene of interest (GOI) from a single copy. Compared to plasmid-based expression systems, this system does not incur a plasmid-mediated metabolic load, and it does not vary the dosage of the GOI during the production process. However, long-term production with T7 expression system leads to a rapidly growing non-producing population, because the T7 RNA polymerase (RNAP) is prone to mutations. The present study aimed to investigate whether two σ70 promoters, which were recognized by the Escherichia coli host RNAP, might be suitable in genome-integrated expression systems. We applied a promoter engineering strategy that allowed control of expressing the model protein, GFP, by introducing lac operators (lacO) into the constitutive T5 and A1 promoter sequences. RESULTS: We showed that, in genome-integrated E. coli expression systems that used σ70 promoters, the number of lacO sites must be well balanced. Promoters containing three and two lacO sites exhibited low basal expression, but resulted in a complete stop in recombinant protein production in partially induced cultures. In contrast, expression systems regulated by a single lacO site and the lac repressor element, lacIQ, on the same chromosome caused very low basal expression, were highly efficient in recombinant protein production, and enables fine-tuning of gene expression levels on a cellular level. CONCLUSIONS: Based on our results, we hypothesized that this phenomenon was associated with the autoregulation of the lac repressor protein, LacI. We reasoned that the affinity of LacI for the lacO sites of the GOI must be lower than the affinity of LacI to the lacO sites of the endogenous lac operon; otherwise, LacI autoregulation could not take place, and the lack of LacI autoregulation would lead to a disturbance in lac repressor-mediated regulation of transcription. By exploiting the mechanism of LacI autoregulation, we created a novel E. coli expression system for use in recombinant protein production, synthetic biology, and metabolic engineering applications.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Lac Repressors/genetics , Promoter Regions, Genetic , DNA-Directed RNA Polymerases/genetics , Green Fluorescent Proteins/genetics , Lac Operon/genetics , Recombinant Proteins , Viral Proteins/genetics
8.
Microb Cell Fact ; 15: 50, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26966093

ABSTRACT

BACKGROUND: Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. RESULTS: Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl ß-D-thiogalactopyranoside) and IPTG (isopropyl ß-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). CONCLUSIONS: We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.


Subject(s)
Lactobacillus plantarum/genetics , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Base Sequence , Blotting, Western , DNA-Directed RNA Polymerases/metabolism , Isopropyl Thiogalactoside/pharmacology , Lactobacillus plantarum/drug effects , Lactobacillus plantarum/growth & development , Lactose/pharmacology , Molecular Sequence Data , Plasmids/metabolism , Viral Proteins/metabolism , Xylose/pharmacology
9.
Microb Cell Fact ; 13: 150, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25410118

ABSTRACT

BACKGROUND: Lactobacillus plantarum constitutes a well-recognized food-grade system for the expression of recombinant proteins in the field of industrial and medical biotechnology. For applications in vivo or in biotechnological processes, the level of expression of e.g. antigens or enzymes is often critical, as expression levels should be of a certain effectiveness, yet, without putting too much strain to the overall system. The key factors that control gene expression are promoter strength, gene copy number and translation efficiency. In order to estimate the impact of these adjusting screws in L. plantarum CD033, we have tested several constitutive promoters in combination with high and low copy number plasmid backbones and varying space between the Shine-Dalgarno sequence and the start-codon. RESULTS: By combining strong promoters, such as transcription elongation factor promoters, isolated from L. plantarum CD033 and L. buchneri CD034, a synthetic promoter, originally derived from L. plantarum WCSF1 and a heterologous promoter derived from L. buchneri CD034 with a high and a low copy number origin of replication we demonstrated various expression levels of the model protein mCherry. All promoters were feasible for protein expression and in all cases, the high copy number origin of replication increased expression twofold. We found that the optimal spacer between the Shine-Dalgarno sequence and the start codon in L. plantarum consists of 8 nucleotides and elongation as well as shortening this sequence gradually down-regulates gene expression. CONCLUSIONS: We have evaluated the effects of a set of gene regulatory tools to fine tune recombinant gene expression in L. plantarum CD033. We have thus, provided potential expression vectors useful for constitutive protein expression in lactic acid bacteria ranging from moderate to strong production levels.


Subject(s)
Gene Expression , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Promoter Regions, Genetic , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
10.
PLoS One ; 5(10): e13265, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20949004

ABSTRACT

Recombinant protein expression in mammalian cells has become a very important technique over the last twenty years. It is mainly used for production of complex proteins for biopharmaceutical applications. Transient recombinant protein expression is a possible strategy to produce high quality material for preclinical trials within days. Viral replicon based expression systems have been established over the years and are ideal for transient protein expression. In this study we describe the evaluation of an influenza A replicon for the expression of recombinant proteins. We investigated transfection and expression levels in HEK-293 cells with EGFP and firefly luciferase as reporter proteins. Furthermore, we studied the influence of different influenza non-coding regions and temperature optima for protein expression as well. Additionally, we exploited the viral replication machinery for the expression of an antiviral protein, the human monoclonal anti-HIV-gp41 antibody 3D6. Finally we could demonstrate that the expression of a single secreted protein, an antibody light chain, by the influenza replicon, resulted in fivefold higher expression levels compared to the usually used CMV promoter based expression. We emphasize that the influenza A replicon system is feasible for high level expression of complex proteins in mammalian cells.


Subject(s)
Influenza A virus/genetics , Replicon , Cell Line , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Green Fluorescent Proteins/genetics , Humans , Influenza A virus/physiology , Luciferases/genetics , Temperature , Transfection , Virus Replication
11.
Mol Biotechnol ; 45(3): 226-34, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20300881

ABSTRACT

Virus-like particles (VLPs) consisting of the influenza A virus proteins haemagglutinin (HA) and matrix protein (M1) represent a new alternative approach for vaccine design against influenza virus. Influenza VLPs can be fast and easily produced in sufficient amounts in insect cells using the baculovirus expression system. Up to now, influenza VLPs have been produced in the Spodoptera frugiperda cell line Sf9. We compared VLP production in terms of yield and quality in two insect cell lines, namely Sf9 and the Trichoplusia ni cell line BTI-TN5B1-4 (High Five). Additionally we compared VLP production with three different HAs and two different M1s from influenza H1 and H3 strains including one swine-origin pandemic H1N1 strain. Comparison of the two cell lines showed dramatic differences in baculovirus background as well as in yield and particle density. Taken together, we consider the establishment of the BTI-TN5B1-4 cell line advantageous as production cell line for influenza VLPs.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis , Influenza A virus/growth & development , Influenza Vaccines/biosynthesis , Spodoptera/cytology , Viral Matrix Proteins/biosynthesis , Virion/isolation & purification , Animals , Antibodies, Viral/metabolism , Baculoviridae/genetics , Blotting, Western , Cell Line , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Mice , Microscopy, Electron, Transmission , Spodoptera/virology , Viral Matrix Proteins/immunology , Virion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...