Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 78: 117149, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36587552

ABSTRACT

This study was aimed at developing a novel platform for tetravalent conjugation of 4-arm polyethylene glycol (PEG) with an antisense oligonucleotide (ASO). The ASO technology has several limitations, such as low cellular uptake, poor nuclease stability, and short half-life. PEG-conjugated ASOs may result in an improvement in the pharmacokinetic behavior of the drug. Moreover, PEGylation can reduce enzymatic degradation and renal excretion of the conjugates, thereby, increasing its blood stability and retention time. In this study, we successfully synthesized PEG-ASO conjugate consisting of 4-arm-PEG and four molecules of ASO (4-arm-PEG-tetra ASO). Its hybridization ability with complementary RNA, enzymatic stability, and in vitro gene silencing ability were evaluated. No significant difference in hybridization ability was observed between 4-arm-PEG-tetra ASO and the parent ASO. In addition, gene silencing activity of the 4-arm-PEG-tetra ASO was observed in vitro. However, the in vitro activity of the 4-arm-PEG-tetra ASO was slightly reduced as that of the parent ASO. Moreover, the 4-arm-PEG-tetra ASO showed appreciable stability in cellular extract, suggesting that it hybridizes with mRNA in its intact form, without being cleaved in the cell, and exhibits ASO activity.


Subject(s)
Oligonucleotides, Antisense , Polyethylene Glycols , Oligonucleotides, Antisense/pharmacology , Oligonucleotides , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...