Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Oleo Sci ; 63(5): 497-506, 2014.
Article in English | MEDLINE | ID: mdl-24717547

ABSTRACT

The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.


Subject(s)
Esters/chemical synthesis , Hexanols/chemistry , Industry , Oil and Gas Fields , Plant Oils/chemistry , Chemical Phenomena , Emulsions , Esterification , Gels , Palm Oil , Time Factors , Vacuum , Viscosity
2.
Int J Nanomedicine ; 8: 4115-29, 2013.
Article in English | MEDLINE | ID: mdl-24204141

ABSTRACT

The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Ferric Compounds/pharmacology , Metal Nanoparticles/chemistry , Nickel/pharmacology , Zinc Compounds/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Cytochromes c/analysis , Cytochromes c/metabolism , Ferric Compounds/chemistry , Glutathione/analysis , Glutathione/metabolism , Humans , Malondialdehyde/analysis , Malondialdehyde/metabolism , Membrane Potential, Mitochondrial/drug effects , Nickel/chemistry , Proto-Oncogene Proteins c-bcl-2/analysis , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/analysis , Tumor Suppressor Protein p53/metabolism , Zinc Compounds/chemistry , bcl-2-Associated X Protein/analysis , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...