Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1295: 179-209, 2015.
Article in English | MEDLINE | ID: mdl-25820723

ABSTRACT

Exosomes are 40-150 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of tumorigenic proteins, mRNA and miRNA. Exosomes are important regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest their importance for diagnostic and therapeutic applications, and as drug delivery vehicles. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. In this chapter, we reveal the protocol and key insights into the isolation, purification and characterization of exosomes, distinct from shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, a comprehensive evaluation of exosome isolation methods including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM-coated magnetic beads (IAC-Exos) were examined. All exosome isolation methodologies contained 40-150 nm vesicles based on electron microscopy, and positive for exosome markers (Alix, TSG101, HSP70) based on immunoblotting. This protocol employed a proteomic profiling approach to characterize the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method in exosome isolation. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, IAC-Exos was shown to be the most effective method to isolate exosomes. However, the use of density-based separation (DG-Exos) provides significant advantages for exosome isolation when the use of immunoaffinity capture is limited (due to antibody availability and suitability of exosome markers).


Subject(s)
Cell Fractionation/methods , Exosomes , Proteomics , Cell Line , Centrifugation, Density Gradient/methods , Chromatography, Affinity , Humans , Proteins/chemistry , Proteins/isolation & purification , Proteomics/methods , Tandem Mass Spectrometry
2.
Mol Cell Proteomics ; 12(8): 2148-59, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23645497

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles following EMT, we conducted a proteomic analysis of exosomes released from Madin-Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40-100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies and are released from cells on fusion of multivesicular bodies with the plasma membrane. Exosomes from MDCK cells (MDCK-Exos) and 21D1 cells (21D1-Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep™), and protein content identified by GeLC-MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryo-electron microscopy and contained stereotypical exosome marker proteins such as TSG101, Alix, and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCK- and 21D1-Exos, i.e. reduction of characteristic inhibitor of angiogenesis, thrombospondin-1, and epithelial markers E-cadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1-Exos are enriched with several proteases (e.g. MMP-1, -14, -19, ADAM-10, and ADAMTS1), and integrins (e.g. ITGB1, ITGA3, and ITGA6) that have been recently implicated in regulating the tumor microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g. the master transcriptional regulator YBX1) and core splicing complex components (e.g. SF3B1, SF3B3, and SFRS1) in mesenchymal 21D1-Exos. Taken together, our findings reveal that exosomes from Ras-transformed MDCK cells are reprogrammed with factors which may be capable of inducing EMT in recipient cells.


Subject(s)
Epithelial-Mesenchymal Transition , Exosomes/metabolism , ras Proteins/metabolism , Animals , Annexins/metabolism , Cell Transformation, Neoplastic/metabolism , Dogs , Genes, ras , Integrins/metabolism , Madin Darby Canine Kidney Cells , Peptide Hydrolases/metabolism , Proteome , Tetraspanins/metabolism
3.
Proteomics ; 13(10-11): 1672-86, 2013 May.
Article in English | MEDLINE | ID: mdl-23585443

ABSTRACT

Exosomes are small extracellular 40-100 nm diameter membrane vesicles of late endosomal origin that can mediate intercellular transfer of RNAs and proteins to assist premetastatic niche formation. Using primary (SW480) and metastatic (SW620) human isogenic colorectal cancer cell lines we compared exosome protein profiles to yield valuable insights into metastatic factors and signaling molecules fundamental to tumor progression. Exosomes purified using OptiPrep™ density gradient fractionation were 40-100 nm in diameter, were of a buoyant density ~1.09 g/mL, and displayed stereotypic exosomal markers TSG101, Alix, and CD63. A major finding was the selective enrichment of metastatic factors (MET, S100A8, S100A9, TNC), signal transduction molecules (EFNB2, JAG1, SRC, TNIK), and lipid raft and lipid raft-associated components (CAV1, FLOT1, FLOT2, PROM1) in exosomes derived from metastatic SW620 cells. Additionally, using cryo-electron microscopy, ultrastructural components in exosomes were identified. A key finding of this study was the detection and colocalization of protein complexes EPCAM-CLDN7 and TNIK-RAP2A in colorectal cancer cell exosomes. The selective enrichment of metastatic factors and signaling pathway components in metastatic colon cancer cell-derived exosomes contributes to our understanding of the cross-talk between tumor and stromal cells in the tumor microenvironment.


Subject(s)
Exosomes/physiology , Proteome/metabolism , Signal Transduction , Animals , Calcium-Binding Proteins/metabolism , Calgranulin A/metabolism , Calgranulin B/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms , Endothelial Cells/physiology , Ephrin-B2/metabolism , ErbB Receptors/metabolism , Exosomes/pathology , Germinal Center Kinases , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Mice , Neoplasm Metastasis , Protein Serine-Threonine Kinases/metabolism , Serrate-Jagged Proteins , Tenascin/metabolism , src-Family Kinases/metabolism
4.
Mol Cell Proteomics ; 12(3): 587-98, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23230278

ABSTRACT

Exosomes are naturally occurring biological nanomembranous vesicles (∼40 to 100 nm) of endocytic origin that are released from diverse cell types into the extracellular space. They have pleiotropic functions such as antigen presentation and intercellular transfer of protein cargo, mRNA, microRNA, lipids, and oncogenic potential. Here we describe the isolation, via sequential immunocapture using anti-A33- and anti-EpCAM-coupled magnetic beads, of two distinct populations of exosomes released from organoids derived from human colon carcinoma cell line LIM1863. The exosome populations (A33-Exos and EpCAM-Exos) could not be distinguished via electron microscopy and contained stereotypical exosome markers such as TSG101, Alix, and HSP70. The salient finding of this study, revealed via gel-based LC-MS/MS, was the exclusive identification in EpCAM-Exos of the classical apical trafficking molecules CD63 (LAMP3), mucin 13 and the apical intestinal enzyme sucrase isomaltase and increased expression of dipeptidyl peptidase IV and the apically restricted pentaspan membrane glycoprotein prominin 1. In contrast, the A33-Exos preparation was enriched with basolateral trafficking molecules such as early endosome antigen 1, the Golgi membrane protein ADP-ribosylation factor, and clathrin. Our observations are consistent with EpCAM- and A33-Exos being released from the apical and basolateral surfaces, respectively, and the EpCAM-Exos proteome profile with widely published stereotypical exosomes. A proteome analysis of LIM1863-derived shed microvesicles (sMVs) was also performed in order to clearly distinguish A33- and EpCAM-Exos from sMVs. Intriguingly, several members of the MHC class I family of antigen presentation molecules were exclusively observed in A33-Exos, whereas neither MHC class I nor MHC class II molecules were observed via MS in EpCAM-Exos. Additionally, we report for the first time in any extracellular vesicle study the colocalization of EpCAM, claudin-7, and CD44 in EpCAM-Exos. Given that these molecules are known to complex together to promote tumor progression, further characterization of exosome subpopulations will enable a deeper understanding of their possible role in regulation of the tumor microenvironment.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/metabolism , Exosomes/metabolism , Membrane Glycoproteins/metabolism , Organoids/metabolism , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell-Derived Microparticles/classification , Cell-Derived Microparticles/metabolism , Chromatography, Liquid , Claudins/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Epithelial Cell Adhesion Molecule , Exosomes/classification , Histocompatibility Antigens Class I/metabolism , Humans , Hyaluronan Receptors/metabolism , Lysosomal Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Tandem Mass Spectrometry , Transcription Factors/metabolism
5.
J Proteomics ; 76 Spec No.: 141-9, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-22796352

ABSTRACT

Secreted proteins encoded by mutated genes (mutant proteins) are a particularly rich source of biomarkers being not only components of the cancer secretome but also actually implicated in tumorigenesis. One of the challenges of proteomics-driven biomarker discovery research is that the bulk of secreted mutant proteins cannot be identified directly and quantified by mass spectrometry due to the lack of mutated peptide information in extant proteomics databases. Here we identify, using an integrated genomics and proteomics strategy (referred to iMASp - identification of Mutated And Secreted proteins), 112 putative mutated tryptic peptides (corresponding to 57 proteins) in the collective secretomes derived from a panel of 18 human colorectal cancer (CRC) cell lines. Central to this iMASp was the creation of Human Protein Mutant Database (HPMD), against which experimentally-derived secretome peptide spectra were searched. Eight of the identified mutated tryptic peptides were confirmed by RT-PCR and cDNA sequencing of RNA extracted from those CRC cells from which the mutation was identified by mass spectrometry. The iMASp technology promises to improve the link between proteomics and genomic mutation data thereby providing an effective tool for targeting tryptic peptides with mutated amino acids as potential cancer biomarker candidates. This article is part of a Special Issue entitled: Integrated omics.


Subject(s)
Biomarkers, Tumor/metabolism , Colonic Neoplasms/metabolism , Mutation , Neoplasm Proteins/metabolism , Proteome/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Databases, Protein , Humans , Mass Spectrometry , Neoplasm Proteins/genetics , Proteome/genetics , Reverse Transcriptase Polymerase Chain Reaction
6.
Methods ; 56(2): 293-304, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22285593

ABSTRACT

Exosomes are 40-100nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of oncogenic proteins as well as mRNA and miRNA. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. However, all preparations invariably contain varying proportions of other membranous vesicles that co-purify with exosomes such as shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, in this study we performed a comprehensive evaluation of current methods used for exosome isolation including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM coated magnetic beads (IAC-Exos). Notably, all isolations contained 40-100nm vesicles, and were positive for exosome markers (Alix, TSG101, HSP70) based on electron microscopy and Western blotting. We employed a proteomic approach to profile the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, we found IAC-Exos to be the most effective method to isolate exosomes. For example, Alix, TSG101, CD9 and CD81 were significantly higher (at least 2-fold) in IAC-Exos, compared to UG-Exos and DG-Exos. Application of immunoaffinity capture has enabled the identification of proteins including the ESCRT-III component VPS32C/CHMP4C, and the SNARE synaptobrevin 2 (VAMP2) in exosomes for the first time. Additionally, several cancer-related proteins were identified in IAC-Exos including various ephrins (EFNB1, EFNB2) and Eph receptors (EPHA2-8, EPHB1-4), and components involved in Wnt (CTNNB1, TNIK) and Ras (CRK, GRB2) signalling.


Subject(s)
Centrifugation, Density Gradient/methods , Exosomes/chemistry , Immunoassay/methods , Proteomics/methods , Ultracentrifugation/methods , Biomarkers/chemistry , Blotting, Western , Cell Line, Tumor , Culture Media/chemistry , Databases, Protein , Endosomal Sorting Complexes Required for Transport/chemistry , Exosomes/ultrastructure , Humans , Microscopy, Electron , Protein Transport , Proteome/analysis , Proteome/chemistry
7.
Mol Cell Proteomics ; 9(2): 197-208, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19837982

ABSTRACT

Exosomes are 40-100-nm-diameter nanovesicles of endocytic origin that are released from diverse cell types. To better understand the biological role of exosomes and to avoid confounding data arising from proteinaceous contaminants, it is important to work with highly purified material. Here, we describe an immunoaffinity capture method using the colon epithelial cell-specific A33 antibody to purify colorectal cancer cell (LIM1215)-derived exosomes. LC-MS/MS revealed 394 unique exosomal proteins of which 112 proteins (28%) contained signal peptides and a significant enrichment of proteins containing coiled coil, RAS, and MIRO domains. A comparative protein profiling analysis of LIM1215-, murine mast cell-, and human urine-derived exosomes revealed a subset of proteins common to all exosomes such as endosomal sorting complex required for transport (ESCRT) proteins, tetraspanins, signaling, trafficking, and cytoskeletal proteins. A conspicuous finding of this comparative analysis was the presence of host cell-specific (LIM1215 exosome) proteins such as A33, cadherin-17, carcinoembryonic antigen, epithelial cell surface antigen (EpCAM), proliferating cell nuclear antigen, epidermal growth factor receptor, mucin 13, misshapen-like kinase 1, keratin 18, mitogen-activated protein kinase 4, claudins (1, 3, and 7), centrosomal protein 55 kDa, and ephrin-B1 and -B2. Furthermore, we report the presence of the enzyme phospholipid scramblase implicated in transbilayer lipid distribution membrane remodeling. The LIM1215-specific exosomal proteins identified in this study may provide insights into colon cancer biology and potential diagnostic biomarkers.


Subject(s)
Antibodies/immunology , Chromatography, Affinity/methods , Colonic Neoplasms/metabolism , Exosomes/metabolism , Proteome/metabolism , Proteomics/methods , Amino Acid Motifs , Cell Line, Tumor , Exosomes/ultrastructure , Humans , Mast Cells/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Neoplasm Proteins/urine , Organ Specificity , Protein Structure, Tertiary
8.
Electrophoresis ; 29(12): 2660-71, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18494037

ABSTRACT

Exosomes are membrane vesicles of endocytic origin released by many cell types. The molecular composition of exosomes reflects the specialised functions of their original cells. For example, these vesicles can mediate communication through their ability to bind to target cells, facilitating processes such as vascular homeostasis and antigen presentation. Although the proteomes of exosomes from several cell types are known, exploration of exosomes from additional cell types may improve our understanding of their potential physiological roles. Here, we describe the isolation and characterisation of exosomes isolated from the culture medium of murine fibroblast NIH3T3 cells and Ras-transformed NIH3T3 cells. The vesicular nature and size (30-100 nm) of the purified fibroblast exosomes was confirmed by electron microscopy. 2-D difference gel electrophoresis (DIGE) was used to compare protein profiles of exosomes secreted from NIH3T3 cells and Ras-transformed NIH3T3 cells. LC-MS/MS sequencing identified proteins in 188 protein spots in the exosomes from the two cell lines, many of which have been previously identified in exosomes from other cell types. However, some proteins identified are novel for fibroblast exosomes, such as Serpin B6. Over 34 proteins, including milk fat globule EGF factor 8 (lactadherin), collagen alpha-1 (VI), 14-3-3 isoforms, guanine nucleotide-binding proteins (G proteins), the eukaryotic translation initiation factors elF-3 gamma and elF-5A accumulated (>2-fold) in exosomes upon Ras-induced oncogenic transformation. Significantly, the 10.4-fold increase in v-Ha-Ras p21 protein in exosomes derived from Ras-transformed NIH3T3 cells suggests that exosome secretion may be implicated in eradication of obsolete proteins.


Subject(s)
Fibroblasts/metabolism , Genes, ras , Organelles/metabolism , Proteome/metabolism , Animals , Cell Line, Transformed , Electrophoresis, Gel, Two-Dimensional , Fibroblasts/ultrastructure , Mice , Microscopy, Electron , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...