Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 23(2)2018 Feb 24.
Article in English | MEDLINE | ID: mdl-29495286

ABSTRACT

Age-related diseases, such as osteoarthritis, Alzheimer's disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO) pathway. Boswellic acids (BAs) are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.


Subject(s)
Cathepsin G/antagonists & inhibitors , Frankincense/chemistry , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Enzyme Activation/drug effects , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/isolation & purification , Plant Extracts/isolation & purification , Triterpenes/chemical synthesis , Triterpenes/isolation & purification
2.
Planta Med ; 83(12-13): 1020-1027, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28403501

ABSTRACT

Boswellic acids constitute a group of unique pentacyclic triterpene acids from Boswellia serrata with multiple pharmacological activities that confer them anti-inflammatory and anti-tumoral properties. A subgroup of boswellic acids, characterized by an 11-keto group, elevates intracellular Ca2+ concentrations [Ca2+]i and causes moderate aggregation of human platelets. How different BAs and their mixtures in pharmacological preparations affect these parameters in activated platelets has not been addressed, so far. Here, we show that boswellic acids either antagonize or induce Ca2+ mobilization and platelet aggregation depending on defined structural determinants with inductive effects predominating for a B. serrata gum resin extract. 3-O-Acetyl-11-keto-ß-boswellic acid potently suppressed Ca2+ mobilization (IC50 = 6 µM) and aggregation (IC50 = 1 µM) when platelets were activated by collagen or the thromboxane A2 receptor agonist U-46619, but not upon thrombin. In contrast, ß-boswellic acid and 3-O-acetyl-ß-boswellic acid, which lack the 11-keto moiety, were weak inhibitors of agonist-induced platelet responses, but instead they elicited elevation of [Ca2+]i and aggregation of platelets (≥ 3 µM). 11-Keto-ß-boswellic acid, the structural intermediate between 3-O-acetyl-11-keto-ß-boswellic acid and ß-boswellic acid, was essentially inactive independent of the experimental conditions. Together, our study unravels the complex agonizing and antagonizing properties of boswellic acids on human platelets in pharmacologically relevant preparations of B. serrata gum extracts and prompts for careful evaluation of the safety of such extracts as herbal medicine in cardiovascular risk patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Boswellia/chemistry , Calcium/metabolism , Plant Extracts/pharmacology , Triterpenes/pharmacology , Anti-Inflammatory Agents/chemistry , Blood Platelets/drug effects , Humans , Plant Extracts/chemistry , Structure-Activity Relationship , Triterpenes/chemistry
3.
Pharmacol Res ; 102: 53-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26361729

ABSTRACT

The antimicrobial peptide LL-37 is the sole member of the human cathelicidin family with immune system-modulating properties and roles in autoimmune disease development. Small molecules able to interact with LL-37 and to modulate its functions have not been described yet. Boswellic acids (BAs) are pentacyclic triterpene acids that are bioactive principles of frankincense extracts used as anti-inflammatory remedies. Although various anti-inflammatory modes of action have been proposed for BAs, the pharmacological profile of these compounds is still incompletely understood. Here, we describe the identification of human LL-37 as functional target of BAs. In unbiased target fishing experiments using immobilized BAs as bait and human neutrophils as target source, LL-37 was identified as binding partner assisted by MALDI-TOF mass spectrometry. Thermal stability experiments using circular dichroism spectroscopy confirm direct interaction between BAs and LL-37. Of interest, this binding of BAs resulted in an inhibition of the functionality of LL-37. Thus, the LPS-neutralizing properties of isolated LL-37 were inhibited by 3-O-acetyl-ß-BA (Aß-BA) and 3-O-acetyl-11-keto-ß-BA (AKß-BA) in a cell-free limulus amoebocyte lysate assay with EC50=0.2 and 0.8 µM, respectively. Also, LL-37 activity was inhibited by these BAs in LL-37-enriched supernatants of stimulated neutrophils or human plasma derived from stimulated human whole blood. Together, we reveal BAs as inhibitors of LL-37, which might be a relevant mechanism underlying the anti-inflammatory properties of BAs and suggests BAs as suitable chemical tools or potential agents for intervention with LL-37 and related disorders.


Subject(s)
Anti-Infective Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cathelicidins/metabolism , Immune System/drug effects , Triterpenes/pharmacology , Antimicrobial Cationic Peptides , Humans , Neutrophils/drug effects
5.
J Immunol ; 183(5): 3433-42, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19648270

ABSTRACT

Frankincense preparations, used in folk medicine to cure inflammatory diseases, showed anti-inflammatory effectiveness in animal models and clinical trials. Boswellic acids (BAs) constitute major pharmacological principles of frankincense, but their targets and the underlying molecular modes of action are still unclear. Using a BA-affinity Sepharose matrix, a 26-kDa protein was selectively precipitated from human neutrophils and identified as the lysosomal protease cathepsin G (catG) by mass spectrometry (MALDI-TOF) and by immunological analysis. In rigid automated molecular docking experiments BAs tightly bound to the active center of catG, occupying the same part of the binding site as the synthetic catG inhibitor JNJ-10311795 (2-[3-[methyl[1-(2-naphthoyl)piperidin-4-yl]amino]carbonyl)-2-naphthyl]-1-(1-naphthyl)-2-oxoethylphosphonic acid). BAs potently suppressed the proteolytic activity of catG (IC(50) of approximately 600 nM) in a competitive and reversible manner. Related serine proteases were significantly less sensitive against BAs (leukocyte elastase, chymotrypsin, proteinase-3) or not affected (tryptase, chymase). BAs inhibited chemoinvasion but not chemotaxis of challenged neutrophils, and they suppressed Ca(2+) mobilization in human platelets induced by isolated catG or by catG released from activated neutrophils. Finally, oral administration of defined frankincense extracts significantly reduced catG activities in human blood ex vivo vs placebo. In conclusion, we show that catG is a functional and pharmacologically relevant target of BAs, and interference with catG could explain some of the anti-inflammatory properties of frankincense.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Boswellia/physiology , Cathepsins/metabolism , Serine Endopeptidases/metabolism , Triterpenes/pharmacology , Adult , Amino Acid Sequence , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Binding, Competitive , Boswellia/metabolism , Cathepsin G , Cathepsins/antagonists & inhibitors , Cathepsins/blood , Drug Delivery Systems , Humans , Hydrolysis/drug effects , Molecular Sequence Data , Plant Extracts/administration & dosage , Plant Extracts/metabolism , Plant Extracts/pharmacology , Protein Binding , Serine Endopeptidases/blood , Triterpenes/administration & dosage , Triterpenes/metabolism
6.
Biochem Pharmacol ; 76(7): 862-72, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18692027

ABSTRACT

Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor used in the therapy of inflammatory and painful conditions. Various COX-2-independent pharmacological effects, such as a chemo-preventive and tumor-regressive activity have been suggested, but the respective non-COX-2 targets of celecoxib are still a matter of research. We now demonstrate that celecoxib inhibits 5-lipoxygenase (5-LO), a key enzyme in leukotriene (LT) biosynthesis. Celecoxib suppressed 5-LO product formation in ionophore A23187-activated human polymorphonuclear leukocytes (IC(50) approximately 8 microM). Similarly, celecoxib inhibited LTB(4) formation in human whole blood (IC(50) approximately 27.3 microM). Direct interference of 5-LO with celecoxib was visualized by inhibition of enzyme catalysis both in cell homogenates and with purified 5-LO (IC(50) approximately 23.4 and 24.9 microM, respectively). Related lipoxygenases (12-LO and 15-LO) were not affected by celecoxib. Other COX-2 inhibitors (etoricoxib and rofecoxib) or unselective NSAIDs (non-steroidal anti-inflammatory drugs, diclofenac) failed to inhibit 5-LO. In rats which received celecoxib (i.p.), the blood LTB(4) levels were dose-dependently reduced with an ED(50) value approximately 35.2 mg/kg. Together, celecoxib is a direct inhibitor of 5-LO in vitro and in vivo. These findings provide a potential molecular basis for some of the described COX-2-independent pharmacological effects of celecoxib.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacology , Lipoxygenase Inhibitors , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Adult , Animals , Arachidonate 5-Lipoxygenase/metabolism , Celecoxib , Cells, Cultured , Female , HeLa Cells , Humans , Hydroxyeicosatetraenoic Acids/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/enzymology , Leukotriene B4/metabolism , Male , Rats , Rats, Sprague-Dawley
7.
Biochem Pharmacol ; 76(1): 91-7, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18508031

ABSTRACT

Carnosic acid (CA) and carnosol (CS) are phenolic diterpenes present in several labiate herbs like Rosmarinus officinalis (Rosemary) and Salvia officinalis (Sage). Extracts of these plants exhibit anti-inflammatory properties, but the underlying mechanisms are largely undefined. Recently, we found that CA and CS activate the peroxisome proliferator-activated receptor gamma, implying an anti-inflammatory potential on the level of gene regulation. Here we address short-term effects of CA and CS on typical functions of human polymorphonuclear leukocytes (PMNL). We found that (I), CA and CS inhibit the formation of pro-inflammatory leukotrienes in intact PMNL (IC(50)=15-20 microM [CA] and 7 microM [CS], respectively) as well as purified recombinant 5-lipoxygenase (EC number 1.13.11.34, IC(50)=1 microM [CA] and 0.1 microM [CS], respectively), (II) both CA and CS potently antagonise intracellular Ca(2+) mobilisation induced by a chemotactic stimulus, and (III) CA and CS attenuate formation of reactive oxygen species and the secretion of human leukocyte elastase (EC number 3.4.21.37). Together, our findings provide a pharmacological basis for the anti-inflammatory properties reported for CS- and CA-containing extracts.


Subject(s)
Abietanes/pharmacology , Lipoxygenase Inhibitors/pharmacology , Neutrophils/drug effects , Plant Extracts/pharmacology , Calcium/metabolism , Homeostasis , Humans , Neutrophils/cytology , Neutrophils/metabolism , Reactive Oxygen Species/metabolism
8.
Mol Pharmacol ; 70(3): 1071-8, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16788089

ABSTRACT

Boswellic acids inhibit the transformation of arachidonic acid to leukotrienes via 5-lipoxygenase but can also enhance the liberation of arachidonic acid in human leukocytes and platelets. Using human platelets, we explored the molecular mechanisms underlying the boswellic acid-induced release of arachidonic acid and the subsequent metabolism by platelet-type 12-li-poxygenase (p12-LO). Both beta-boswellic acid and 3-O-acetyl-11-keto-boswellic acid (AKBA) markedly enhanced the release of arachidonic acid via cytosolic phospholipase A2 (cPLA2), whereas for generation of 12-hydro(pero)xyeicosatetraenoic acid [12-H(P)ETE], AKBA was less potent than beta-boswellic acid and was without effect at higher concentrations (> or =30 microM). In contrast to thrombin, beta-boswellic acid-induced release of ara-chidonic acid and formation of 12-H(P)ETE was more rapid and occurred in the absence of Ca2+. The Ca2+-independent release of arachidonic acid and 12-H(P)ETE production elicited by beta-boswellic acid was not affected by pharmacological inhibitors of signaling molecules relevant for agonist-induced arachidonic acid liberation and metabolism. It is noteworthy that in cell-free assays, beta-boswellic acid increased p12-LO catalysis approximately 2-fold in the absence but not in the presence of Ca2+, whereas AKBA inhibited p12-LO activity. No direct modulatory effects of boswellic acids on cPLA2 activity in cell-free assays were evident. Therefore, immobilized KBA (linked to Sepharose beads) selectively precipitated p12-LO from platelet lysates but failed to bind cPLA2. Taken together, we show that boswellic acids induce the release of arachidonic acid and the synthesis of 12-H(P)ETE in human platelets by unique Ca2+-independent routes, and we identified p12-LO as a selective molecular target of boswellic acids.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Blood Platelets/drug effects , Blood Platelets/enzymology , Calcium/metabolism , Triterpenes/pharmacology , Blood Platelets/metabolism , Cell-Free System , Humans , Kinetics , Leukotrienes/biosynthesis , Phospholipases A/metabolism , Phospholipases A2 , Signal Transduction/drug effects , Triterpenes/chemistry
9.
J Pharmacol Exp Ther ; 316(1): 224-32, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16174802

ABSTRACT

Previously, we showed that 11-keto-boswellic acid and 3-O-acetyl-11-keto-BA (AKBA) stimulate Ca(2+) mobilization and activate mitogen-activated protein kinases (MAPKs) in human polymorphonuclear leukocytes (PMNLs). Here, we addressed the effects of boswellic acids on the intracellular Ca(2+) concentration ([Ca(2+)](i)) and on the activation of p38(MAPK) and extracellular signal-regulated kinase (ERK) in the human monocytic cell line Mono Mac (MM) 6. In contrast to PMNLs, AKBA concentration dependently (1-30 microM) decreased the basal [Ca(2+)](i) in resting MM6 cells but also in cells where [Ca(2+)](i) had been elevated by stimulation with platelet-activating factor (PAF). AKBA also strongly suppressed the subsequent elevation of [Ca(2+)](i) induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP), PAF, or by the direct phospholipase C activator 2,4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide, but AKBA failed to prevent Ca(2+) signals induced by thapsigargin or ionomycin. Suppression of Ca(2+) homeostasis by AKBA was also observed in primary monocytes, isolated from human blood. Moreover, AKBA inhibited the activation of p38(MAPK) and ERKs in fMLP-stimulated MM6 cells. Although the effects of AKBA could be mimicked by the putative phospholipase C (PLC) inhibitor U-73122 (1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), AKBA appears to operate independent of PLC activity since the release of intracellular inositol-1,4,5-trisphosphate evoked by 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide was hardly diminished by AKBA. Inhibitor studies indicate that AKBA may decrease [Ca(2+)](i) by blocking store-operated Ca(2+) and/or nonselective cation channels. Together, AKBA interferes with pivotal signaling events in monocytic cells that are usually required for monocyte activation by proinflammatory stimuli. Interruption of these events may represent a possible mechanism underlying the reported anti-inflammatory properties of AKBA.


Subject(s)
Calcium Channel Agonists/pharmacology , Calcium/metabolism , Mitogen-Activated Protein Kinases/metabolism , Monocytes/metabolism , Triterpenes/pharmacology , Anti-Inflammatory Agents , Blotting, Western , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Humans , In Vitro Techniques , Inosine Triphosphate/metabolism , Monocytes/drug effects , Monocytes/enzymology , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Platelet Activating Factor/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
10.
Br J Pharmacol ; 146(4): 514-24, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16086030

ABSTRACT

We have recently shown that in polymorphonuclear leukocytes, 11-keto boswellic acids (KBAs) induce Ca2+ mobilisation and activation of mitogen-activated protein kinases (MAPK). Here we addressed the effects of BAs on central signalling pathways in human platelets and on various platelet functions. We found that beta-BA (10 microM), the 11-methylene analogue of KBA, caused a pronounced mobilisation of Ca2+ from internal stores and induced the phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK)2, and Akt. These effects of beta-BA were concentration dependent, and the magnitude of the responses was comparable to those obtained after platelet stimulation with thrombin or collagen. Based on inhibitor studies, beta-BA triggers Ca2+ mobilisation via the phospholipase (PL)C/inositol-1,4,5-trisphosphate pathway, and involves Src family kinase signalling. Investigation of platelet functions revealed that beta-BA (> or =10 microM) strongly stimulates the platelet-induced generation of thrombin in an ex-vivo in-vitro model, the liberation of arachidonic acid (AA), and induces platelet aggregation in a Ca2+-dependent manner. In contrast to beta-BA, the 11-keto-BAs (KBA or AKBA) evoke only moderate Ca2+ mobilisation and activate p38 MAPK, but fail to induce phosphorylation of ERK2 or Akt, and do not cause aggregation or significant generation of thrombin. In summary, beta-BA potently induces Ca2+ mobilisation as well as the activation of pivotal protein kinases, and elicits functional platelet responses such as thrombin generation, liberation of AA, and aggregation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Blood Platelets/drug effects , Calcium Signaling/drug effects , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Triterpenes/pharmacology , Analysis of Variance , Anti-Inflammatory Agents/chemistry , Arachidonic Acid/metabolism , Blood Platelets/physiology , Dose-Response Relationship, Drug , Humans , In Vitro Techniques , Mitogen-Activated Protein Kinase 1/metabolism , Phosphorylation/drug effects , Platelet Aggregation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Thrombin/metabolism , Time Factors , Triterpenes/chemistry , Type C Phospholipases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...