Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2893, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35610200

ABSTRACT

Ion stopping in warm dense matter is a process of fundamental importance for the understanding of the properties of dense plasmas, the realization and the interpretation of experiments involving ion-beam-heated warm dense matter samples, and for inertial confinement fusion research. The theoretical description of the ion stopping power in warm dense matter is difficult notably due to electron coupling and degeneracy, and measurements are still largely missing. In particular, the low-velocity stopping range, that features the largest modelling uncertainties, remains virtually unexplored. Here, we report proton energy-loss measurements in warm dense plasma at unprecedented low projectile velocities. Our energy-loss data, combined with a precise target characterization based on plasma-emission measurements using two independent spectroscopy diagnostics, demonstrate a significant deviation of the stopping power from classical models in this regime. In particular, we show that our results are in closest agreement with recent first-principles simulations based on time-dependent density functional theory.

2.
Nat Commun ; 8: 15693, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28569766

ABSTRACT

The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.

3.
Article in English | MEDLINE | ID: mdl-26651804

ABSTRACT

The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.

4.
Phys Rev Lett ; 110(11): 115001, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-25166546

ABSTRACT

This Letter reports on the measurement of the energy loss and the projectile charge states of argon ions at an energy of 4 MeV/u penetrating a fully ionized carbon plasma. The plasma of n(e)≈10(20) cm(-3) and T(e)≈180 eV is created by two laser beams at λ(Las)=532 nm incident from opposite sides on a thin carbon foil. The resulting plasma is spatially homogenous and allows us to record precise experimental data. The data show an increase of a factor of 2 in the stopping power which is in very good agreement with a specifically developed Monte Carlo code, that allows the calculation of the heavy ion beam's charge state distribution and its energy loss in the plasma.

5.
Rev Sci Instrum ; 83(4): 043501, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22559530

ABSTRACT

This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 × 10(18) cm(-3), the maximal one is 2 × 10(20) cm(-3). Furthermore, it provides a resolution of the electron density in space of 50 µm and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.

6.
Phys Rev Lett ; 105(26): 265701, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21231678

ABSTRACT

Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

SELECTION OF CITATIONS
SEARCH DETAIL
...