Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611002

ABSTRACT

Current prostate carcinoma (PCa) biomarkers, including total prostate-specific antigen (tPSA), have unsatisfactory diagnostic sensitivity and specificity resulting in overdiagnosis and overtreatment. Previously, we described an optimised bias-based preamplification-digital droplet PCR (OBBPA-ddPCR) technique, which detects tumour DNA in blood-derived cell-free DNA (cfDNA) of cancer patients. The current study investigated the performance of newly developed OBBPA-ddPCR-based biomarkers. Blood plasma samples from healthy individuals (n = 90, controls) and PCa (n = 39) and benign prostatic hyperplasia patients (BPH, n = 40) were analysed. PCa and BPH patients had tPSA values within a diagnostic grey area of 2-15 ng/mL, for whom further diagnostic validation is most crucial. Methylation levels of biomarkers RASSF1A, MIR129-2, NRIP3, and SOX8 were found significantly increased in PCa patients compared to controls. By combining classical PCa risk factors (percentage of free PSA compared to tPSA (QfPSA) and patient's age) with cfDNA-based biomarkers, we developed PCa risk scores with improved sensitivity and specificity compared to established tPSA and QfPSA single-marker analyses. The diagnostic specificity was increased to 70% with 100% sensitivity for clinically significant PCa patients. Thus, prostate biopsies could be avoided for 28 out of 40 BPH patients. In conclusion, the newly developed risk scores may help to confirm the clinical decision and prevent unnecessary prostate biopsy.

2.
Cancers (Basel) ; 13(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34503269

ABSTRACT

Identification of aberrant DNA methylation is a promising tool in prostate cancer (PCa) diagnosis and treatment. In this study, we evaluated a two-step method named optimised bias-based preamplification followed by digital PCR (OBBPA-dPCR). The method was used to identify promoter hypermethylation of 2 tumour suppressor genes RASSF1A and GSTP1 in the circulating cell-free DNA (cfDNA) from serum samples of PCa patients (n = 75), benign prostatic hyperplasia (BPH, n = 58), and healthy individuals (controls, n = 155). The PCa cohort was further subdivided into subgroups comprising (I) patients with Gleason Scores (GS) ≤ 7 (n = 55), (II) GS ≥ 8 (n = 10), and (III) patients with metastatic PCa diagnosis (n = 10). We found that RASSF1A methylation levels were significantly increased in all 3 PCa subgroups compared to the controls and BPH cohorts (p < 0.01 for all comparisons). Fractional abundances of methylated GSTP1 DNA fragments were significantly increased in subgroup III of metastatic PCa patients (p < 0.001). RASSF1A methylation analysis was found to be beneficial as a complementary biomarker where further diagnostic validation is most crucial. In combination with free PSA, RASSF1A methylation status helps to identify PCa patients with GS ≥ 8 and grey-zone total PSA values between 2-10 ng/mL. In our study, PCR biases between 80-90% were sufficient to detect minute amounts of tumour DNA with high signal-to-noise ratios as well as high analytical sensitivity and specificity. Both RASSF1A and GSTP1 exhibited strongly increased DNA methylation levels in all metastatic PCa patients. Our data indicates a superior sensitivity of epigenetic biomarker analyses in early detection of PCa metastases that should also help to improve PCa therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...