Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(7): 1949-1954, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36787373

ABSTRACT

Spin-crossover molecules present the unique property of having two spin states that can be controlled by light excitation at low temperature. Here, we report on the photoexcitation of [FeII((3, 5-(CH3)2Pz)3BH)2] (Pz = pyrazolyl) ultrathin films, with thicknesses ranging from 0.9 to 5.3 monolayers, adsorbed on Cu(111) substrate. Using X-ray absorption spectroscopy measurements, we confirm the anomalous light-induced spin-state switching observed for sub-monolayer coverage and demonstrate that it is confined to the first molecular layer in contact with the metallic substrate. For higher coverages, the well-known light-induced excited spin-state trapping effect is recovered. Combining continuous light excitation with thermal cycling, we demonstrate that at low temperature light-induced thermal hysteresis is measured for the thicker films, while for sub-monolayer coverage, the light enables extension of the thermal conversion over a large temperature range. Mechanoelastic simulations underline that, due to the intermolecular interactions, opposite behaviors are observed in the different layers composing the films.

2.
J Phys Chem Lett ; 12(26): 6152-6158, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34184899

ABSTRACT

Spin-crossover molecules are very attractive compounds to realize multifunctional spintronic devices. Understanding their properties when deposited on metals is therefore crucial for their future rational implementation as ultrathin films in such devices. Using X-ray absorption spectroscopy, we study the thermal transition of the spin-crossover compound FeII((3,5-(CH3)2Pz)3BH)2 from submonolayer to multilayers on a Cu(111) substrate. We determine how the residual fraction of high spin molecules at low temperature, as well as the bistability range and the temperature of switching, depends on the layer thickness. The most spectacular effect is the clear opening of a 35 ± 9 K thermal hysteresis loop for a 3.0 ± 0.7 monolayers thick film. To better understand the role played by the substrate and the dimensionality on the thermal bistability, we have performed Monte Carlo Arrhenius simulations in the framework of a mechanoelastic model that include a molecule-substrate interaction. This model reproduces well the main features observed experimentally and can predict how the spin-crossover transition is modified by the thickness and the substrate interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...