Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 6(12): 3229-3238, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38868819

ABSTRACT

Due to the expansion of the aquaculture industry in the world and the importance of controlling ammonia in fish breeding water, high levels of which impose significant damage to fish farming, it is crucial to develop affordable, rapid, and on-site methods for timely and accurate detection of ammonia. In this study, a colorimetric sensor based on the formation of gold/silver core/shell nanorods (NRs) was developed for the rapid detection of ammonia. The sensor functioned by the specific dissolution of silver(i) oxide by ammonia, which triggered the activation of silver ions and the subsequent formation of gold/silver core/shell NRs in the presence of a reducing agent (i.e., ascorbic acid (AA)). This led to changes in the surface composition, size, and aspect ratio of the NRs, which was accompanied by a vivid color change from green to red/orange in less than a minute. The colorimetric sensor was optimized by adjusting the effective parameters, including ascorbic acid, silver ion, and sodium hydroxide concentration as well as pH and reaction time. After the optimization process, the sensor was found to have a linear range from 50 to 800 µmol L-1 (0.85-13.6 ppm). In addition, the application of the sensor was validated by measuring the ammonia content in water samples from rearing ponds for rainbow trout, sturgeon, and tilapia before and after feeding. The sensor's label-free, rapid, user-friendly, naked-eye, and cost-effective operation makes it an attractive option for on-site environmental monitoring of ammonia.

2.
Fish Physiol Biochem ; 48(1): 201-213, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35059978

ABSTRACT

This experiment was aimed to determine the possible beneficial effects of dietary ascorbic acid (AA) on hematological indices, immune responses, and antioxidative capacity of Oncorhynchus mykiss treated with antibiotic oxytetracycline (OTC). A total of 150 fish were divided evenly among five experimental groups (30 fish of each, in 3 replicates) receiving diets containing OTC (0 and 100 mg per kg fish weight) and AA (100, 200, 400, and 800 mg per kg fish diet) for 28 days. Treatments include group A or control (100 mg AA without OTC), group B (100 mg AA with OTC), group C (200 mg AA with OTC), group D (400 mg AA with OTC), and group E (800 mg AA with OTC). The results obtained showed that the hematological indices (red blood cells, white blood cells, hematocrit, hemoglobin, and neutrophils), immunological parameters (plasma lysozyme, plasma complement, and skin mucus alkaline phosphatase activities), and antioxidant enzymes activities (superoxide dismutase and catalase) were significantly decreased by OTC in O. mykiss fed control diet (P < 0.05). The results also revealed that OTC significantly increased the activity of biochemical enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) in the plasma of O. mykiss fed control diet (P < 0.05). However, in comparison to the control diet, feeding fish with higher amounts of AA (400 and 800 mg/kg diet) significantly restored the hematological, immunological, and antioxidative responses in OTC-treated groups (p < 0.05). These findings show that the dietary supplementation of AA at 400 or 800 mg/kg diet is beneficial in relieving O. mykiss from OTC-induced oxidative stress and immunosuppression.


Subject(s)
Ascorbic Acid/pharmacology , Oncorhynchus mykiss , Oxidative Stress/drug effects , Oxytetracycline , Animal Feed/analysis , Animals , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements/analysis , Immune Tolerance , Oncorhynchus mykiss/immunology , Oxytetracycline/toxicity
3.
Ecotoxicol Environ Saf ; 194: 110353, 2020 May.
Article in English | MEDLINE | ID: mdl-32146193

ABSTRACT

The present study aimed to evaluate the effects of different waterborne sublethal concentrations of Ag-NPs LC50 (96h) on common carp Cyprinus carpio using a multi-biomarker approach. Fish (9.22 ± 0.12 g) were stocked in fiberglass tanks and exposed to concentrations of 0 (control), 12.5%, 25% and 50% of Ag-NPs LC50 (96h) or Ag-NO3 LC50 (96h), as the source of Ag+ ion, for a period of 21 days. At the end of study, tissue Ag contents were significantly (P < 0.05) higher and different in fish exposed to concentrations of 25% and 50% compared to the control. The numbers of RBCs, hematocrit, and MCHC values at these concentrations differed significantly in respect to the control. No significant effects were observed for hemoglobin, MCH, and MCV values. The number of WBCs was significantly higher at concentrations of 12.5% and 25% compared to the control. Meanwhile, the percentage of neutrophils significantly elevated at concentrations of 25% and 50%. Serum total protein at concentration of 50% detected significantly lower than that of 12.5% or the control. The serum albumin and globulin levels significantly declined in Ag-NPs-exposed groups versus the control. The serum ACH50 and total immunoglobulins showed significantly lower values in the treatments of 25% and 50% compared to the control. The serum glucose, cortisol, ALT, and ALP values significantly escalated upon Ag-NPs exposure. The serum SOD and CAT showed enhanced activity in the treatment of 12.5% vice versa significantly diminished at concentrations of 25% and 50% compared to the control. The exposure to the concentrations of 25% and 50% significantly dwindled the lysozyme activity and total immunoglobulin levels in skin mucus. In conclusion, sublethal concentrations of Ag-NPs LC50 (96h) impaired fish health status at higher concentrations and 12.5% of Ag-NPs LC50 (96h) was presumably safe for common carp aquaculture.


Subject(s)
Carps/physiology , Metal Nanoparticles/toxicity , Silver/toxicity , Animals , Antioxidants/metabolism , Aquaculture , Bioaccumulation , Carps/metabolism , Erythrocytes/metabolism , Hematocrit , Hematology , Hemoglobins/metabolism , Lethal Dose 50
SELECTION OF CITATIONS
SEARCH DETAIL
...