Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 10(1): 41, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33623027

ABSTRACT

We show that organic photovoltaics (OPVs) are suitable for high-speed optical wireless data receivers that can also harvest power. In addition, these OPVs are of particular interest for indoor applications, as their bandgap is larger than that of silicon, leading to better matching to the spectrum of artificial light. By selecting a suitable combination of a narrow bandgap donor polymer and a nonfullerene acceptor, stable OPVs are fabricated with a power conversion efficiency of 8.8% under 1 Sun and 14% under indoor lighting conditions. In an optical wireless communication experiment, a data rate of 363 Mb/s and a simultaneous harvested power of 10.9 mW are achieved in a 4-by-4 multiple-input multiple-output (MIMO) setup that consists of four laser diodes, each transmitting 56 mW optical power and four OPV cells on a single panel as receivers at a distance of 40 cm. This result is the highest reported data rate using OPVs as data receivers and energy harvesters. This finding may be relevant to future mobile communication applications because it enables enhanced wireless data communication performance while prolonging the battery life in a mobile device.

2.
Entropy (Basel) ; 22(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-33286668

ABSTRACT

The capacity limits of fiber-optic communication systems in the nonlinear regime are not yet well understood. In this paper, we study the capacity of amplitude modulated first-order soliton transmission, defined as the maximum of the so-called time-scaled mutual information. Such definition allows us to directly incorporate the dependence of soliton pulse width to its amplitude into capacity formulation. The commonly used memoryless channel model based on noncentral chi-squared distribution is initially considered. Applying a variance normalizing transform, this channel is approximated by a unit-variance additive white Gaussian noise (AWGN) model. Based on a numerical capacity analysis of the approximated AWGN channel, a general form of capacity-approaching input distributions is determined. These optimal distributions are discrete comprising a mass point at zero (off symbol) and a finite number of mass points almost uniformly distributed away from zero. Using this general form of input distributions, a novel closed-form approximation of the capacity is determined showing a good match to numerical results. Finally, mismatch capacity bounds are developed based on split-step simulations of the nonlinear Schro¨dinger equation considering both single soliton and soliton sequence transmissions. This relaxes the initial assumption of memoryless channel to show the impact of both inter-soliton interaction and Gordon-Haus effects. Our results show that the inter-soliton interaction effect becomes increasingly significant at higher soliton amplitudes and would be the dominant impairment compared to the timing jitter induced by the Gordon-Haus effect.

3.
Opt Express ; 25(16): 18685-18702, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041064

ABSTRACT

This paper studies different signaling techniques on the continuous spectrum (CS) of nonlinear optical fiber defined by nonlinear Fourier transform. Three different signaling techniques are proposed and analyzed based on the statistics of the noise added to CS after propagation along the nonlinear optical fiber. The proposed methods are compared in terms of error performance, distance reach, and complexity. Furthermore, the effect of chromatic dispersion on the data rate and noise in nonlinear spectral domain is investigated. It is demonstrated that, for a given sequence of CS symbols, an optimal bandwidth (or symbol rate) can be determined so that the temporal duration of the propagated signal at the end of the fiber is minimized. In effect, the required guard interval between the subsequently transmitted data packets in time is minimized and the effective data rate is significantly enhanced. Moreover, by selecting the proper signaling method and design criteria a distance reach of 7100 km is reported by only singling on CS at a rate of 9.6 Gbps.

4.
Bioelectromagnetics ; 34(6): 489-98, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23633149

ABSTRACT

We designed a rectangular waveguide exposure system to study the effects of mobile phone frequency (940 MHz) electromagnetic fields (EMF) on luciferase structure and activity. The luciferase activity of exposed samples was significantly higher than that of unexposed samples. Dynamic light scattering of the exposed samples showed smaller hydrodynamic radii compared to unexposed samples (20 nm vs. 47 nm ± 5%). The exposed samples also showed less tendency to form aggregates, monitored by turbidity measurements at l = 360 nm. A microwave dielectric measurement was performed to study the hydration properties of luciferase solutions with a precision network analyzer over frequency ranges from 0.2 to 20 GHz before and after exposure. The change in the dielectric properties of the exposed luciferase solution was related to the disaggregation potency of the applied field. Together, our results suggested that direct interactions with luciferase molecules and its dipole moment were responsible for the reduced aggregation and enhanced luciferase activity upon exposure to the EMF.


Subject(s)
Electromagnetic Fields , Luciferases/metabolism , Luciferases/radiation effects , Animals , Dielectric Spectroscopy , Kinetics , Protein Conformation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...