Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35009058

ABSTRACT

Potassium (K) is the most abundant cation in plants, playing an important role in osmoregulation. Little is known about the effect of genotypic variation in the tolerance to osmotic stress under different K treatments in barley. In this study, we measured the interactive effects of osmotic stress and K supply on growth and stress responses of two barley cultivars (Hordeum vulgare L.) and monitored reactive oxygen species (ROS) along with enzymatic antioxidant activity and their respective gene expression level. The selected cultivars (cv. Milford and cv. Sahin-91Sahin-91) were exposed to osmotic stress (-0.7 MPa) induced by polyethylene glycol 6000 (PEG) under low (0.04 mM) and adequate (0.8 mM) K levels in the nutrient solution. Leaf samples were collected and analyzed for levels of K, ROS, kinetic activity of antioxidants enzymes and expression levels of respective genes during the stress period. The results showed that optimal K supply under osmotic stress significantly decreases ROS production and adjusts antioxidant activity, leading to the reduction of oxidative stress in the studied plants. The cultivar Milford had a lower ROS level and a better tolerance to stress compared to the cultivar Sahin-91. We conclude that optimized K supply is of great importance in mitigating ROS-related damage induced by osmotic stress, specifically in drought-sensitive barley cultivars.

2.
Physiol Plant ; 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29667201

ABSTRACT

Potassium (K) and magnesium (Mg) are mineral nutrients that are required in large quantities by plants. Both elements critically contribute to the process of photosynthesis and the subsequent long-distance transport of photoassimilates. If K or Mg is not present in sufficient quantities in photosynthetic tissues, complex interactions of anatomical, physiological and biochemical responses result in a reduction of photosynthetic carbon assimilation. As a consequence, excessive production of reactive oxygen species causes photo-oxidation of the photosynthetic apparatus and causes an up-regulation of photoprotective mechanisms. In this article, we review the functioning of K and Mg in processes directly or indirectly associated with photosynthesis. Focus is given to chloroplast ultrastructure, light-dependent and -independent reactions of photosynthesis and the diffusion of CO2  - a major substrate for photosynthesis - into chloroplasts. We further emphasize their contribution to phloem-loading and long-distance transport of photoassimilates and to the photoprotection of the photosynthetic apparatus.

3.
J Plant Physiol ; 209: 20-30, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28012363

ABSTRACT

Potassium (K) is crucial for crop growth and is strongly related to stress tolerance and water-use efficiency (WUE). A major physiological effect of K deficiency is the inhibition of net CO2 assimilation (AN) during photosynthesis. Whether this reduction originates from limitations either to photochemical energy conversion or biochemical CO2 fixation or from a limitation to CO2 diffusion through stomata and the leaf mesophyll is debated. In this study, limitations to photosynthetic carbon gain of sunflower (Helianthus annuus L.) under K deficiency and PEG- induced water deficit were quantified and their implications on plant- and leaf-scale WUE (WUEP, WUEL) were evaluated. Results show that neither maximum quantum use efficiency (Fv/Fm) nor in-vivo RubisCo activity were directly affected by K deficiency and that the observed impairment of AN was primarily due to decreased CO2 mesophyll conductance (gm). K deficiency additionally impaired leaf area development which, together with reduced AN, resulted in inhibition of plant growth and a reduction of WUEP. Contrastingly, WUEL was not affected by K supply which indicated no inhibition of stomatal control. PEG-stress further impeded AN by stomatal closure and resulted in enhanced WUEL and high oxidative stress. It can be concluded from this study that reduction of gm is a major response of leaves to K deficiency, possibly due to changes in leaf anatomy, which negatively affects AN and contributes to the typical symptoms like oxidative stress, growth inhibition and reduced WUEP.


Subject(s)
Helianthus/physiology , Photosynthesis/drug effects , Potassium/pharmacology , Water/metabolism , Biomass , Chlorophyll/metabolism , Fluorescence , Gases/metabolism , Helianthus/drug effects , Helianthus/growth & development , Hydrogen Peroxide/metabolism , Mesophyll Cells/drug effects , Mesophyll Cells/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Roots/drug effects , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...