Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Article in English | MEDLINE | ID: mdl-38878000

ABSTRACT

This study presents a novel three-dimensional (3D) printable gallium-carbon black-styrene isoprene styrene block copolymer (Ga-CB-SIS), offering a versatile solution for the rapid fabrication of stretchable and integrated sensor-heater-battery systems in wearable and recyclable electronics. The composite exhibits sinter-free characteristics, allowing for printing on various substrates, including heat-sensitive materials. Unlike traditional conductive inks, the Ga-CB-SIS composite, composed of gallium, carbon black, and styrene isoprene block copolymers, combines electrical conductivity, stretchability, and digital printability. By introducing carbon black as a filler material, the composite achieves promising electromechanical behavior, making it suitable for low-resistance heaters, batteries, and electrical interconnects. The fabrication process involves a simultaneous mixing and ball-milling technique, resulting in a homogeneous composition with a CB/Ga ratio of 4.3%. The Ga-CB-SIS composite showcases remarkable adaptability for digital printing on various substrates. Its self-healing property and efficient recycling technique using a deep eutectic solvent contribute to an environmentally conscious approach to electronic waste, with a high gallium recovery efficiency of ∼98%. The study's innovation extends to applications, presenting a fully digitally printed stretchable Ga-CB-SIS battery integrated with strain sensors and heaters, representing a significant leap in LM-based composites. This multifunctional and sustainable Ga-CB-SIS composite emerges as a key player in the future of wearable electronics, offering integrated circuits with sensing, heating, and energy storage elements.

2.
Small ; 20(20): e2304716, 2024 May.
Article in English | MEDLINE | ID: mdl-38335309

ABSTRACT

The last decade observed rapid progress in soft electronics. Yet, the ultimate desired goal for many research fields is to fabricate fully integrated soft-matter electronics with sensors, interconnects, and batteries, at the ease of pushing a print button. In this work, an important step is taken toward this by demonstrating an ultra-stretchable thin-film Silver-Gallium (Ag-Ga) battery with an unprecedented combination of areal capacity and mechanical strain tolerance. The Biphasic Gallium-Carbon anode electrode demonstrates a record-breaking areal capacity of 78.7 mAh cm-2, and an exceptional stretchability of 170%, showing clear progress over state-of-the-art. The exceptional theoretical capacity of gallium, along with its natural liquid phase self-healing, and its dendrite-free operation permits excellent electromechanical cycling. All composites of the battery including liquid-metal-based current collectors, and electrodes are sinter-free and digitally printable at room temperature, enabling the use of a wide range of substrates, including heat-sensitive polymer films. Consequently, it is demonstrated for the first time multi-layer, and multi-material digital printing of complex battery-on-the-board stretchable devices that integrate printed sensor, multiple cells of printed battery, highly conductive interconnects, and silicone chips, and demonstrate a tailor-made patch for body-worn electrophysiological monitoring.

3.
Adv Sci (Weinh) ; 10(26): e2301673, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37436091

ABSTRACT

Despite advances in soft, sticker-like electronics, few efforts have dealt with the challenge of electronic waste. Here, this is addressed by introducing an eco-friendly conductive ink for thin-film circuitry composed of silver flakes and a water-based polyurethane dispersion. This ink uniquely combines high electrical conductivity (1.6 × 105 S m-1 ), high resolution digital printability, robust adhesion for microchip integration, mechanical resilience, and recyclability.  Recycling is achieved with an ecologically-friendly processing method to decompose the circuits into constituent elements and recover the conductive ink with a decrease of only 2.4% in conductivity. Moreover, adding liquid metal enables stretchability of up to 200% strain, although this introduces the need for more complex recycling steps. Finally, on-skin electrophysiological monitoring biostickers along with a recyclable smart package with integrated sensors for monitoring safe storage of perishable foods are demonstrated.

4.
Adv Healthc Mater ; 12(22): e2300918, 2023 09.
Article in English | MEDLINE | ID: mdl-37133868

ABSTRACT

Recently, highly stretchable and tough hydrogels that are photodegradable on-demand have been reported. Unfortunately, the preparation procedure is complex due to the hydrophobic nature of the photocrosslinkers. Herein, a simple method is reported to prepare photodegradable double-network (DN) hydrogels that exhibit high stretchability, toughness, and biocompatibility. Hydrophilic ortho-nitrobenzyl (ONB) crosslinkers incorporating different poly(ethylene glycol) (PEG) backbones (600, 1000, and 2000 g mol-1 ) are synthesized. These photodegradable DN hydrogels are prepared by the irreversible crosslinking of chains by using such ONB crosslinkers, and the reversible ionic crosslinking between sodium alginate and divalent cations (Ca2+ ). Remarkable mechanical properties are obtained by combining ionic and covalent crosslinking and their synergistic effect, and by reducing the length of the PEG backbone. The rapid on-demand degradation of these hydrogels is also demonstrated by using cytocompatible light wavelength (λ = 365 nm) that degrades the photosensitive ONB units. The authors have successfully used these hydrogels as skin-worn sensors for monitoring human respiration and physical activities. A combination of excellent mechanical properties, facile fabrication, and on-demand degradation holds promise for their application as the next generation of substrates or active sensors eco-friendly for bioelectronics, biosensors, wearable computing, and stretchable electronics.


Subject(s)
Hydrogels , Polyethylene Glycols , Humans , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Alginates/chemistry , Hydrophobic and Hydrophilic Interactions , Ions
5.
ACS Appl Mater Interfaces ; 15(20): 24777-24787, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37163362

ABSTRACT

Liquid crystal elastomers (LCEs) have grown in popularity in recent years as a stimuli-responsive material for soft actuators and shape reconfigurable structures. To make these material systems electrically responsive, they must be integrated with soft conductive materials that match the compliance and deformability of the LCE. This study introduces a design and manufacturing methodology for combining direct ink write (DIW) 3D printing of soft, stretchable conductive inks with DIW-based "4D printing" of LCE to create fully integrated, electrically responsive, shape programmable matter. The conductive ink is composed of a soft thermoplastic elastomer, a liquid metal alloy (eutectic gallium indium, EGaIn), and silver flakes, exhibiting both high stretchability and conductivity (order of 105 S m-1). Empirical tuning of the LCE printing parameters gives rise to a smooth surface (<10 µm) for patterning the conductive ink with controlled trace dimensions. This multimaterial printing method is used to create shape reconfigurable LCE devices with on-demand circuit patterning that could otherwise not be easily fabricated through traditional means, such as an LCE bending actuator able to blink a Morse code signal and an LCE crawler with an on/off photoresistor controller. In contrast to existing fabrication methodologies, the inclusion of the conductive ink allows for stable power delivery to surface mount devices and Joule heating traces in a highly dynamic LCE system. This digital fabrication approach can be leveraged to push LCE actuators closer to becoming functional devices, such as shape programmable antennas and actuators with integrated sensing.

6.
ACS Appl Mater Interfaces ; 15(16): 20372-20384, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37067294

ABSTRACT

Wearable bioelectronic patches are creating a transformative effect in the health care industry for human physiological signal monitoring. However, the use of such patches is restricted due to the unavailability of a proper power source. Ideal biodevices should be thin, soft, robust, energy-efficient, and biocompatible. Here, we report development of a flexible, lightweight, and biocompatible electronic skin-cum-portable power source for wearable bioelectronics by using a processed chicken feather fiber. The device is fabricated with a novel, breathable composite of biowaste chicken feather and organic poly(vinylidene fluoride) (PVDF) polymer, where the chicken feather fiber constitutes the "microbones" of the PVDF, enhancing its piezoelectric phase content, biocompatibility, and crystallinity. Thanks to its outstanding pressure sensitivity, the fabricated electronic skin is used for the monitoring of different human physiological signals such as body motion, finger and joint bending, throat activities, and pulse rate with excellent sensitivity. A wireless system is developed to remotely receive the different physiological signals as captured by the electronic skin. We also explore the capabilities of the device as a power source for other small electronics. The piezoelectric energy harvesting device can harvest a maximum output voltage of ∼28 V and an area power density of 1.4 µW·cm-2 from the human finger imparting. The improved energy harvesting property of the device is related to the induced higher fraction of the electroactive phase in the composite. The easy process ability, natural biocompatibility, superior piezoelectric performance, high pressure sensitivity, and alignment toward wireless transmission of the captured data make the device a promising candidate for wearable bioelectronic patches and power sources.


Subject(s)
Wearable Electronic Devices , Humans , Polyvinyls , Epidermis , Motion
7.
Front Neural Circuits ; 17: 1293620, 2023.
Article in English | MEDLINE | ID: mdl-38186631

ABSTRACT

In vivo recordings in freely behaving animals are crucial to understand the neuronal circuit basis of behavior. Although current multi-channel silicon probes provide unparalleled sampling density, the study of interacting neuronal populations requires the implantation of multiple probes across different regions of the brain. Ideally, these probes should be independently adjustable, to maximize the yield, and recoverable, to mitigate costs. In this work, we describe the implementation of a miniaturized 3D-printed headgear system for chronic in vivo recordings in mice using independently movable silicon probes targeting multiple brain regions. We successfully demonstrated the performance of the headgear by simultaneously recording the neuronal activity in the prelimbic cortex and dorsal hippocampus. The system proved to be sturdy, ensuring high-quality stable recordings and permitted reuse of the silicon probes, with no observable interference in mouse innate behaviors.


Subject(s)
Brain , Silicon , Animals , Mice , Cerebral Cortex , Hippocampus
8.
Soft Matter ; 18(44): 8486-8503, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36321471

ABSTRACT

Soft, conductive, and stretchable hydrogels offer a broad variety of applications, including skin-interfacing electrodes, biomonitoring patches, and electrostimulation. Despite rapid developments over the last decades, a combination of good electrical and mechanical properties, low-cost fabrication, and biocompatibility is yet to be demonstrated. Also, the current methods for deposition and patterning of these hydrogels are manual, and there is a need toward autonomous and digital fabrication techniques. In this work, we demonstrate a novel Gallium (Ga) embedded sodium-alginate-polyacrylamide-LAPONITE® (Ga-SA-PAAM-La) hydrogel, that is ultra-stretchable (Maximum strain tolerance of∼985%), tough (toughness ∼30 kJ m-3), bio-adhesive (adhesion energy ∼216 J m-2), conductive, and digitally printable. Ga nanoparticles are used as radical initiators. By adjusting the sonication parameters, we control the solution viscosity and curing time, thus allowing us to prepare pre-polymers with the desired properties for casting, or digital printing. These hydrogels benefit from a triple-network structure due to the role of Ga droplets as crosslinkers besides BIS (N,N'-methylene-bis-acrylamide) and LAPONITE®, thus resulting in tough composite hydrogels. The inclusion of LAPONITE® into the hydrogel network improved its electrical conductivity, adhesion, digital printability, and its mechanical properties, (>6× compared to the same hydrogel without LAPONITE®). As electrodes in the electrocardiogram, the signal-to-noise ratio was surprisingly higher than the medical-grade Ag/AgCl electrodes, which are applied for monitoring muscles, heart, respiration, and body joint angle through EMG, ECG, and bioimpedance measurements. The results obtained prove that such digitally printed conductive and tough hydrogels can be used as potential electrodes and sensors in practical applications in the next generation of printed wearable computing devices.


Subject(s)
Hydrogels , Silicates , Hydrogels/chemistry , Electric Conductivity , Silicates/chemistry , Polymers/chemistry
9.
Adv Mater ; 34(31): e2203266, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35697348

ABSTRACT

E-waste is rapidly turning into another man-made disaster. It is proposed that a paradigm shift toward a more sustainable future can be made through soft-matter electronics that are resilient, repairable if damaged, and recyclable (3R), provided that they achieve the same level of maturity as industrial electronics. This includes high-resolution patterning, multilayer implementation, microchip integration, and automated fabrication. Herein, a novel architecture of materials and methods for microchip-integrated condensed soft-matter 3R electronics is demonstrated. The 3R function is enabled by a biphasic liquid metal-based composite, a block copolymer with nonpermanent physical crosslinks, and an electrochemical technique for material recycling. In addition, an autonomous laser-patterning method for scalable circuit patterning with an exceptional resolution of <30 µm in seconds is developed. The phase-shifting property of the BCPs is utilized for vapor-assisted "soldering" circuit repairing and recycling. The process is performed entirely at room temperature, thereby opening the door for a wide range of heat-sensitive and biodegradable polymers for the next generation of green electronics. The implementation and recycling of sophisticated skin-mounted patches with embedded sensors, electrodes, antennas, and microchips that build a digital fingerprint of the human electrophysiological signals is demonstrated by collecting mechanical, electrical, optical, and thermal data from the epidermis.


Subject(s)
Wearable Electronic Devices , Electrodes , Electronics , Humans , Metals , Polymers/chemistry
10.
Mater Today Bio ; 15: 100325, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35757031

ABSTRACT

We present for the first time highly stretchable and tough hydrogels with controlled light-triggered photodegradation. A double-network of alginate/polyacrylamide (PAAm) is formed by using covalently and ionically crosslinked subnetworks. The ionic Ca2+ alginate interpenetrates a PAAm network covalently crosslinked by a bifunctional acrylic crosslinker containing the photodegradable o-nitrobenzyl (ONB) core instead of the commonly used methylene bisacrylamide (MBAA). Remarkably, due to the developed protocol, the change of the crosslinker did not affect the hydrogel's mechanical properties. The incorporation of photosensitive components in hydrogels allows external temporal control of their properties and tuneable degradation. Cell viability and cell proliferation assays revealed that hydrogels and their photodegradation products are not cytotoxic to the NIH3T3 cell line. In one example of application, we used these hydrogels for bio-potential acquisition in wearable electrocardiography. Surprisingly, these hydrogels showed a lower skin-electrode impedance, compared to the common medical grade Ag/AgCl electrodes. This work lays the foundation for the next generation of tough and highly stretchable hydrogels that are environmentally friendly and can find applications in a variety of fields such as health, electronics, and energy, as they combine excellent mechanical properties with controlled degradation.

11.
Nat Commun ; 12(1): 4666, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344880

ABSTRACT

Integration of solid-state microchips into soft-matter, and stretchable printed electronics has been the biggest challenge against their scalable fabrication. We introduce, Pol-Gel, a simple technique for self-soldering, self-encapsulation, and self-healing, that allows low cost, scalable, and rapid fabrication of hybrid microchip-integrated ultra-stretchable circuits. After digitally printing the circuit, and placing the microchips, we trigger a Polymer-Gel transition in physically cross-linked block copolymers substrate, and silver liquid metal composite ink, by exposing the circuits to the solvent vapor. Once in the gel state, microchips penetrate to the ink and the substrate (Self-Soldering), and the ink penetrates to the substrate (Self-encapsulation). Maximum strain tolerance of ~1200% for printed stretchable traces, and >500% for chip-integrated soft circuits is achieved, which is 5x higher than the previous works. We demonstrate condensed soft-matter patches and e-textiles with integrated sensors, processors, and wireless communication, and repairing of a fully cut circuits through Pol-Gel.

12.
ACS Appl Mater Interfaces ; 13(12): 14552-14561, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33689286

ABSTRACT

A bi-phasic ternary Ag-In-Ga ink that demonstrates high electrical conductivity, extreme stretchability, and low electromechanical gauge factor (GF) is introduced. Unlike popular liquid metal alloys such as eutectic gallium-indium (EGaIn), this ink is easily printable and nonsmearing and bonds strongly to a variety of substrates. Using this ink and a simple extrusion printer, the ability to perform direct writing of ultrathin, multi-layer circuits that are highly stretchable (max. strain >600%), have excellent conductivity (7.02 × 105 S m-1), and exhibit only a modest GF (0.9) related to the ratio of percent increase in trace resistance with mechanical strain is demonstrated. The ink is synthesized by mixing optimized quantities of EGaIn, Ag microflakes, and styrene-isoprene block copolymers, which functions as a hyperelastic binder. When compared to the same composite without EGaIn, the Ag-In-Ga ink shows over 1 order of magnitude larger conductivity, up to ∼27× lower GF, and ∼5× greater maximum stretchability. No significant change over the resistance of the ink was observed after 1000 strain cycles. Microscopic analysis shows that mixing EGaIn and Ag microflakes promotes the formation of AgIn2 microparticles, resulting in a cohesive bi-phasic ink. The ink can be sintered at room temperature, making it compatible with many heat-sensitive substrates. Additionally, utilizing a simple commercial extrusion based printer, the ability to perform stencil-free, digital printing of multi-layer stretchable circuits over various substrates, including medical wound-dressing adhesives, is demonstrated for the first time.

13.
Sensors (Basel) ; 20(23)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260466

ABSTRACT

This article reviews recent advances and existing challenges for the application of wearable bioelectronics for patient monitoring and domiciliary hospitalization. More specifically, we focus on technical challenges and solutions for the implementation of wearable and conformal bioelectronics for long-term patient biomonitoring and discuss their application on the Internet of medical things (IoMT). We first discuss the general architecture of IoMT systems for domiciliary hospitalization and the three layers of the system, including the sensing, communication, and application layers. In regard to the sensing layer, we focus on current trends, recent advances, and challenges in the implementation of stretchable patches. This includes fabrication strategies and solutions for energy storage and energy harvesting, such as printed batteries and supercapacitors. As a case study, we discuss the application of IoMT for domiciliary hospitalization of COVID 19 patients. This can be used as a strategy to reduce the pressure on the healthcare system, as it allows continuous patient monitoring and reduced physical presence in the hospital, and at the same time enables the collection of large data for posterior analysis. Finally, based on the previous works in the field, we recommend a conceptual IoMT design for wearable monitoring of COVID 19 patients.


Subject(s)
COVID-19 Testing/instrumentation , COVID-19/diagnosis , COVID-19/physiopathology , Home Care Services, Hospital-Based , Monitoring, Physiologic/instrumentation , Wearable Electronic Devices , Electric Power Supplies , Equipment Design , Humans , Pandemics , SARS-CoV-2 , Wireless Technology/instrumentation
14.
BMC Public Health ; 20(1): 1637, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33138802

ABSTRACT

BACKGROUND: The rising burden of premature mortality for Non-Communicable Diseases (NCDs) in developing countries necessitates the institutionalization of a comprehensive surveillance framework to track trends and provide evidence to design, implement, and evaluate preventive strategies. This study aims to conduct an organization-based prospective cohort study on the NCDs and NCD-related secondary outcomes in adult personnel of the Mashhad University of Medical Sciences (MUMS) as main target population. METHODS: This study was designed to recruit 12,000 adults aged between 30 and 70 years for 15 years. Baseline assessment includes a wide range of established NCD risk factors obtaining by face-to-face interview or examination. The questionnaires consist of demographic and socioeconomic characteristics, lifestyle pattern, fuel consumption and pesticide exposures, occupational history and hazards, personal and familial medical history, medication profile, oral hygiene, reproduction history, dietary intake, and psychological conditions. Examinations include body size and composition test, abdominopelvic and thyroid ultrasonography, orthopedic evaluation, pulse wave velocity test, electrocardiography, blood pressure measurement, smell-taste evaluation, spirometry, mammography, and preferred tea temperature assessment. Routine biochemical, cell count, and fecal occult blood tests are also performed, and the biological samples (i.e., blood, urine, hair, and nail) are stored in preserving temperature. Annual telephone interviews and repeated examinations at 5-year intervals are planned to update information on health status and its determinants. RESULTS: A total of 5287 individuals (mean age of 43.9 ± 7.6 and 45.9% male) were included in the study thus far. About 18.5% were nurses and midwives and 44.2% had at least bachelor's degree. Fatty liver (15.4%), thyroid disorders (11.2%), hypertension (8.8%), and diabetes (4.9%) were the most prevalent NCDs. A large proportion of the population had some degree of anxiety (64.2%). Low physical activity (13 ± 22.4 min per day), high calorie intake (3079 ± 1252), and poor pulse-wave velocity (7.2 ± 1.6 m/s) highlight the need for strategies to improve lifestyle behaviors. CONCLUSION: The PERSIAN Organizational Cohort study in Mashhad University of Medical Sciences is the first organizational cohort study in a metropolitan city of Iran aiming to provide a large data repository on the prevalence and risk factors of the NCDs in a developing country for future national and international research cooperation.


Subject(s)
Noncommunicable Diseases , Adult , Aged , Cities , Cohort Studies , Female , Humans , Iran , Male , Middle Aged , Noncommunicable Diseases/epidemiology , Prospective Studies , Pulse Wave Analysis , Risk Factors
15.
Sci Rep ; 10(1): 5539, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218466

ABSTRACT

Bioelectronics stickers that interface the human epidermis and collect electrophysiological data will constitute important tools in the future of healthcare. Rapid progress is enabled by novel fabrication methods for adhesive electronics patches that are soft, stretchable and conform to the human skin. Yet, the ultimate functionality of such systems still depends on rigid components such as silicon chips and the largest rigid component on these systems is usually the battery. In this work, we demonstrate a quickly deployable, untethered, battery-free, ultrathin (~5 µm) passive "electronic tattoo" that interfaces with the human skin for acquisition and transmission of physiological data. We show that the ultrathin film adapts well with the human skin, and allows an excellent signal to noise ratio, better than the gold-standard Ag/AgCl electrodes. To supply the required energy, we rely on a wireless power transfer (WPT) system, using a printed stretchable Ag-In-Ga coil, as well as printed biopotential acquisition electrodes. The tag is interfaced with data acquisition and communication electronics. This constitutes a "data-by-request" system. By approaching the scanning device to the applied tattoo, the patient's electrophysiological data is read and stored to the caregiver device. The WPT device can provide more than 300 mW of measured power if it is transferred over the skin or 100 mW if it is implanted under the skin. As a case study, we transferred this temporary tattoo to the human skin and interfaced it with an electrocardiogram (ECG) device, which could send the volunteer's heartbeat rate in real-time via Bluetooth.

16.
ACS Appl Mater Interfaces ; 12(3): 3407-3414, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31888325

ABSTRACT

Stretchable electronics stickers that adhere to the human skin and collect biopotentials are becoming increasingly popular for biomonitoring applications. Such stickers include electrodes, stretchable interconnects, silicon chips for processing and communication, and batteries. Here, we demonstrate a material architecture and fabrication technique for a multilayer, stretchable, low-cost, rapidly deployable, and disposable sticker that integrates skin-interfacing hydrogel electrodes, stretchable interconnects, and a Ag2O-Zn (silver oxide-zinc) battery. In addition, the application of a printed biphasic current collector (AgInGa) for the Ag2O-Zn battery is reported for the first time. Surprisingly, and unlike previously reported batteries, the battery capacity increases after being subjected to strain cycles and reaches a record-breaking areal capacity of 6.88 mAh cm-2 post stretch. As a proof of concept, an application of heart rate monitoring is presented. The disposable patch is interfaced with a miniature battery-free electronics circuit for data acquisition, processing, and wireless transmission. A version of the patch partially covering the patient's chest can supply enough energy for continuous operation for ∼6 days.

17.
Adv Healthc Mater ; 8(15): e1900234, 2019 08.
Article in English | MEDLINE | ID: mdl-31273945

ABSTRACT

Surface biopotentials collected from the human epidermis contain important information about human physiology, such as muscular, heart, and brain activities. However, commercially available wearable biomonitoring devices are generally composed of rigid hardware incompatible with the mechanical compliance of soft human tissues. Thin-film stretchable e-skin circuits that can interface the human skin represent an excellent alternative for long-term wearable biomonitoring. Here, a series of soft and stretchable electrodes are evaluated for their applicability in biopotential sensing. This includes conductive composites made of polydimethylsiloxane (PDMS) as a base substrate and conductive particles, i.e., carbon (cPDMS), silver (AgPDMS), anisotropic z-axis conductors made with silver-coated nickel particles (zPDMS), as well as a combination of a conductive tough hydrogel with PDMS, and finally ultrathin tattoo-like adhesive poly(vinyl alcohol)-coated films with stretchable biphasic Ag-EGaIn electrodes. These electrodes are compared between themselves and against the gold-standard Ag/AgCl and stainless steel electrodes, in order to assess relative performance in signal-to-noise ratio (SNR) during electrocardiography, and electrode-skin impedance for a range of frequencies. Results show a direct relation between conformity of the electrode-skin interface and the SNR value. An all-integrated biomonitoring patch with embedded processing and communication electronics, hydrogel electrodes, and a multilayer liquid metal circuit is presented for electromyography.


Subject(s)
Skin Physiological Phenomena , Wearable Electronic Devices , Dimethylpolysiloxanes/chemistry , Electric Impedance , Electrodes , Electromyography/methods , Humans , Hydrogels/chemistry , Monitoring, Physiologic , Nickel/chemistry , Signal-To-Noise Ratio , Silver/chemistry
18.
Lab Chip ; 19(5): 897-906, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30724280

ABSTRACT

We tackle two well-known problems in the fabrication of stretchable electronics: interfacing soft circuit wiring with silicon chips and fabrication of multi-layer circuits. We demonstrate techniques that allow integration of embedded flexible printed circuit boards (FPCBs) populated with microelectronics into soft circuits composed of liquid metal (LM) interconnects. These methods utilize vertical interconnect accesses (VIAs) that are produced by filling LM alloy into cavities formed by laser ablation. The introduced technique is versatile, easy to perform, clean-room free, and results in reliable multi-layer stretchable hybrid circuits that can withstand over 80% of strain. We characterize the fabrication parameters of such VIAs and demonstrated several applications, including a stretchable touchpad and pressure detection film, and an all-integrated multi-layer electromyography (EMG) circuit patch with five active layers including acquisition electrodes, on-board processing and Bluetooth communication modules.

19.
ACS Appl Mater Interfaces ; 10(45): 38760-38768, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30338978

ABSTRACT

We introduce a soft ultrathin and stretchable electronic skin with surface-mounted components that can be transferred and wrapped around any three-dimensional (3D) surface or self-adhere to the human skin. The ∼5 µm thick circuit is fabricated by printing the pattern over a temporary tattoo paper using a desktop laser printer, which is then coated with a silver ink and eutectic gallium-indium (EGaIn) liquid metal alloy. The resulting "Ag-In-Ga" traces are highly conductive and maintain low electrical resistivity as the circuit is stretched to conform to nondevelopable 3D surfaces. We also address integration of surface-mounted microelectronic chips by introducing a novel z-axis conductive interface composed of magnetically aligned EGaIn-coated Ag-Ni microparticles embedded in polyvinyl alcohol (PVA). This " zPVA conductive glue" allows for robust electrical contacts with microchips that have pins with dimensions as small as 300 µm. If printed on the temporary tattoo transfer paper, the populated circuit can be attached to a 3D surface using hydrographic transfer. Both printing and interfacing processes can be performed at the room temperature. We demonstrate examples of applications, including an electronic tattoo over the human epidermis for electromyography signal acquisition, an interactive circuit with touch buttons, and light-emitting diodes transferred over the 3D printed shell of a robotic prosthetic hand, and a proximity measurement skin transferred over a 3D surface.


Subject(s)
Electronics/instrumentation , Gallium/chemistry , Indium/chemistry , Silver/chemistry , Wearable Electronic Devices , Alloys/chemistry , Electric Conductivity , Humans , Microelectrodes , Pliability , Skin Physiological Phenomena
20.
Adv Mater ; : e1801852, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29845674

ABSTRACT

Coating inkjet-printed traces of silver nanoparticle (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity by six-orders of magnitude and significantly improves tolerance to tensile strain. This enhancement is achieved through a room-temperature "sintering" process in which the liquid-phase EGaIn alloy binds the AgNP particles (≈100 nm diameter) to form a continuous conductive trace. Ultrathin and hydrographically transferrable electronics are produced by printing traces with a composition of AgNP-Ga-In on a 5 µm-thick temporary tattoo paper. The printed circuit is flexible enough to remain functional when deformed and can support strains above 80% with modest electromechanical coupling (gauge factor ≈1). These mechanically robust thin-film circuits are well suited for transfer to highly curved and nondevelopable 3D surfaces as well as skin and other soft deformable substrates. In contrast to other stretchable tattoo-like electronics, the low-cost processing steps introduced here eliminate the need for cleanroom fabrication and instead requires only a commercial desktop printer. Most significantly, it enables functionalities like "electronic tattoos" and 3D hydrographic transfer that have not been previously reported with EGaIn or EGaIn-based biphasic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...