Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823918

ABSTRACT

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Subject(s)
Biocompatible Materials , Chondrocytes , Disulfides , Hyaluronic Acid , Hydrogels , Rheology , Tissue Engineering , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Disulfides/chemistry , Chondrocytes/drug effects , Chondrocytes/cytology , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration
2.
Biomimetics (Basel) ; 9(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38534825

ABSTRACT

Our aim was to investigate axonal outgrowth from different tissue models on soft biomaterials based on hyaluronic acid (HA). We hypothesized that HA-based hydrogels differentially promote axonal outgrowth from different neural tissues. Spinal cord sliced cultures (SCSCs) and dorsal root ganglion cultures (DRGCs) were maintained on a collagen gel, a physically crosslinked HA-based hydrogel (Healon 5®) and a novel chemically crosslinked HA-based hydrogel, with or without the presence of neurotrophic factors (NF). Time-lapse microscopy was performed after two, five and eight days, where axonal outgrowth was assessed by automated image analysis. Neuroprotection was investigated by PCR. Outgrowth was observed in all groups; however, in the collagen group, it was scarce. At the middle timepoint, outgrowth from SCSCs was superior in both HA-based groups compared to collagen, regardless of the presence of NF. In DRGCs, the outgrowth in Healon 5® with NF was significantly higher compared to the rest of the groups. PCR revealed upregulation of NeuN gene expression in the HA-based groups compared to controls after excitotoxic injury. The differences in neurite outgrowth from the two different tissue models suggest that axons differentially respond to the two types of biomaterials.

3.
Mater Today Bio ; 22: 100768, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37600348

ABSTRACT

Visualizing cells, tissues, and their components specifically without interference with cellular functions, such as biochemical reactions, and cellular viability remains important for biomedical researchers worldwide. For an improved understanding of disease progression, tissue formation during development, and tissue regeneration, labeling extracellular matrix (ECM) components secreted by cells persists is required. Bioorthogonal chemistry approaches offer solutions to visualizing and labeling ECM constituents without interfering with other chemical or biological events. Although biorthogonal chemistry has been studied extensively for several applications, this review summarizes the recent advancements in using biorthogonal chemistry specifically for metabolic labeling and visualization of ECM proteins and glycosaminoglycans that are secreted by cells and living tissues. Challenges, limitations, and future directions surrounding biorthogonal chemistry involved in the labeling of ECM components are discussed. Finally, potential solutions for improvements to biorthogonal chemical approaches are suggested. This would provide theoretical guidance for labeling and visualization of de novo proteins and polysaccharides present in ECM that are cell-secreted for example during tissue remodeling or in vitro differentiation of stem cells.

4.
Biomater Sci ; 10(22): 6399-6412, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36214100

ABSTRACT

Hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is extensively used in the design of hydrogels and nanoparticles for different biomedical applications due to its critical role in vivo, degradability by endogenous enzymes, and absence of immunogenicity. HA-based hydrogels and nanoparticles have been developed by utilizing different crosslinking chemistries. The development of such crosslinking chemistries indicates that even subtle differences in the structure of reactive groups or the procedure of crosslinking may have a profound impact on the intended mechanical, physical and biological outcomes. There are widespread examples of modified HA polymers that can form either covalently or physically crosslinked biomaterials. More recently, studies have been focused on dynamic covalent crosslinked HA-based biomaterials since these types of crosslinking allow the preparation of dynamic structures with the ability to form in situ, be injectable, and have self-healing properties. In this review, HA-based hydrogels and nanomaterials that are crosslinked by dynamic-covalent coupling (DCC) chemistry have been critically assessed.


Subject(s)
Hydrogels , Nanostructures , Hydrogels/chemistry , Hyaluronic Acid/chemistry , Biocompatible Materials/chemistry , Extracellular Matrix
5.
Biomedicines ; 10(1)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35052797

ABSTRACT

The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.

6.
Angew Chem Int Ed Engl ; 61(13): e202112218, 2022 03 21.
Article in English | MEDLINE | ID: mdl-34806284

ABSTRACT

Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.


Subject(s)
Wound Infection , Anti-Bacterial Agents/pharmacology , Biofilms , Humans , Wound Healing , Wound Infection/drug therapy
7.
Angew Chem Weinheim Bergstr Ger ; 134(13): e202112218, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-38505642

ABSTRACT

Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.

8.
Polymers (Basel) ; 13(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073518

ABSTRACT

Recently, many studies have focused on carrageenan-based hydrogels for biomedical applications thanks to their intrinsic properties, including biodegradability, biocompatibility, resembling native glycosaminoglycans, antioxidants, antitumor, immunomodulatory, and anticoagulant properties. They can easily change to three-dimensional hydrogels using a simple ionic crosslinking process. However, there are some limitations, including the uncontrollable exchange of ions and the formation of a brittle hydrogel, which can be overcome via simple chemical modifications of polymer networks to form chemically crosslinked hydrogels with significant mechanical properties and a controlled degradation rate. Additionally, the incorporation of various types of nanoparticles and polymer networks into carrageenan hydrogels has resulted in the formation of hybrid platforms with significant mechanical, chemical and biological properties, making them suitable biomaterials for drug delivery (DD), tissue engineering (TE), and wound healing applications. Herein, we aim to overview the recent advances in various chemical modification approaches and hybrid carrageenan-based platforms for tissue engineering and drug delivery applications.

9.
Carbohydr Polym ; 251: 117013, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33142576

ABSTRACT

The aim of this study was to develop a novel Kappa carrageenan (κCA)-coated Starch/cellulose nanofiber (CNF) with adjustable mechanical, physical and biological properties for hemostatic applications. Results indicated that compared to Starch/CNF hydrogel, mechanical strength of κCA-coated Starch/CNF hydrogels significantly enhanced (upon 2 times), depending on the κCA content. Noticeably, the compressive strength of Starch/CNF increased from 15 ± 3 kPa to 27 ± 2 kPa in the 1% wt. κCA coated sample. Furthermore, the surface modification of Starch/CNF hydrogel using κCA reduced swelling ability (upon 2.3 times) and degradation rate (upon 2 times). Hemolysis and clotting tests indicated that while the hybrid hydrogels were blood compatible, they did not significantly change the blood clotting ability of starch matrix. The synergistic effects of Starch/CNF hydrogel and κCA coating provided excellent properties such as superior mechanical properties, adjustable degradation rate and blood clotting ability making κCA-coated Starch/CNF hydrogel a desirable candidate for hemostatic applications.


Subject(s)
Blood Coagulation/drug effects , Carrageenan , Cellulose , Hemorrhage/therapy , Hemostatics , Hydrogels , Starch , Animals , Carrageenan/chemistry , Carrageenan/pharmacology , Cell Line , Cellulose/chemistry , Cellulose/pharmacology , Fibroblasts , Hemostatics/chemistry , Hemostatics/pharmacology , Hemostatics/therapeutic use , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/therapeutic use , Mice , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanofibers/chemistry , Nanofibers/therapeutic use , Starch/chemistry , Starch/pharmacology , Tensile Strength
10.
Biomolecules ; 10(8)2020 08 11.
Article in English | MEDLINE | ID: mdl-32796593

ABSTRACT

Skin is the largest organ of the human body, protecting it against the external environment. Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need to be covered by skin substitutes. Tremendous progress has been made in the field of skin tissue engineering, in recent years, to develop new skin substitutes. Among them, hydrogels are one of the candidates with most potential to mimic the native skin microenvironment, due to their porous and hydrated molecular structure. They can be applied as a permanent or temporary dressing for different wounds to support the regeneration and healing of the injured epidermis, dermis, or both. Based on the material used for their fabrication, hydrogels can be subdivided into two main groups-natural and synthetic. Moreover, hydrogels can be reinforced by incorporating nanoparticles to obtain "in situ" hybrid hydrogels, showing superior properties and tailored functionality. In addition, different sensors can be embedded in hydrogel wound dressings to provide real-time information about the wound environment. This review focuses on the most recent developments in the field of hydrogel-based skin substitutes for skin replacement. In particular, we discuss the synthesis, fabrication, and biomedical application of novel "smart" hydrogels.


Subject(s)
Hydrogels/pharmacology , Skin, Artificial , Wound Healing/drug effects , Bandages , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Molecular Structure , Nanoparticles , Tissue Engineering
11.
Mater Sci Eng C Mater Biol Appl ; 111: 110837, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279800

ABSTRACT

Sprayable bioadhesives with exceptional properties were developed for application in wound healing. In this study, a visible light-crosslinkable nanocomposite bioadhesive hydrogel with multifunctional properties was proposed. While methacrylated Kappa-carrageenan (KaMA), mimicking the natural glycosaminoglycan was applied as the hydrogel matrix, various concentrations of polydopamine modified ZnO (ZnO/PD) nanoparticles (0, 0.5, 1 and 2 wt%) was loaded in it to improve its mechanical, antibacterial and cellular properties. Moreover, L-glutamic acid was incorporated in the nanocomposite hydrogel network to accelerate wound healing. The nanocomposite hydrogels revealed significant mechanical property and recovery ability, comparable elasticity with human skin and great adhesiveness. For instance, the tensile strength of KaMA hydrogel enhanced from 64.1 ± 10 to 80.3 ± 8 kPa and elongation jumped from 20 ± 4% to 61 ± 5% after incorporation of 1 wt% ZnO/PD nanoparticles. The nanocomposite hydrogels demonstrated effectual blood clotting ability and biocompatibility, >95% cell viability after 3 days of incubation. In vivo experiments also suggested that L-glutamic acid loaded nanocomposite hydrogel considerably accelerated wound healing with superior granulation tissue thickness than control in a full-thickness skin defect model. Taken together, this visible-light crosslinking nanocomposite hydrogel with significant properties could be used to spray on a wound area to eliminate wound infection and accelerate wound healing process.


Subject(s)
Carrageenan/pharmacology , Diabetes Mellitus/pathology , Glutamic Acid/pharmacology , Indoles/pharmacology , Nanocomposites/chemistry , Polymers/pharmacology , Wound Healing , Zinc Oxide/pharmacology , Adult , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Cell Adhesion/drug effects , Cell Line , Drug Liberation , Elasticity , Female , Fluorescence , Humans , Hydrogels/chemistry , Methacrylates/chemistry , Mice , Microbial Sensitivity Tests , Nanoparticles/chemistry , Rats, Wistar , Tissue Adhesives/pharmacology , Viscosity , Wound Healing/drug effects
12.
Int J Biol Macromol ; 138: 590-601, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31344417

ABSTRACT

The aim of this study was to develop injectable and sprayable visible-light crosslinked Kappa-carrageenan (κCA) hydrogel and to investigate the role of polymer concentration (2, 4 and 6 wt%) and degree of methacrylation (6 and 12%) on its properties. It was found that, the average pore sizes, water content and swelling ratio of hydrogel were tunable by changing the methacrylate κCA (KaMA) concentration and methacrylation degree. Furthermore, the mechanical properties of KaMA could be noticeably modulated, depending on the formulation of hydrogel. Tensile and comprehensive modules were enhanced from 68 to 357 kPa and from 213 to 357 kPa, respectively, by increasing KaMA concentration from 2 to 6 wt% and methacrylation degree from 6 to 12%. Furthermore, with increasing methacrylation degree and polymer content, the absorbed energy and energy loss were increased. Moreover, recovery significantly enhanced from 27.3% to 74.4% with increasing polymer content from 2 to 6 wt%. Finally, visible-light crosslinked KaMA hydrogels not only was biocompatible, but also could promote HaLa cell and fibloblasts function. The visible-light crosslinked KaMA is thought to be an exclusive biomaterial as a sprayable hydrogel being able to cover skin injuries or to inject as a bio-printing material to in situ heal soft tissue damages.


Subject(s)
Biocompatible Materials/chemistry , Carrageenan/chemistry , Hydrogels/chemistry , Light , Tissue Engineering , Adsorption , Cell Line , Chemical Phenomena , Connective Tissue , Cross-Linking Reagents/chemistry , Humans , Hydrogels/chemical synthesis , Materials Testing , Mechanical Phenomena , Tissue Engineering/methods
13.
Carbohydr Polym ; 214: 234-249, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30925993

ABSTRACT

An injectable nanohybrid hydrogel with robust mechanical properties was developed based on Methacrylate-Kappa-carrageenan (KaMA)-dopamine functionalized graphene oxide (GOPD) for soft tissue engineering. KaMA-GOPD hydrogels revealed shear-thinning behavior and injectability through interaction of active catechol groups of dopamine with other moieties in the structure of hydrogels. In addition, these interactions promoted mechanical properties of hydrogels, depending on the GOPD content. Noticeably, encapsulation of 20 wt.% GOPD significantly enhanced compressive strength (8-folds) and toughness (6-folds) of KaMA. Furthermore, the hybrid hydrogel consisting of 20 wt.% GOPD significantly reduced energy loss from 70% (at KaMA) to about 61%, after a two-cycle compression test, while significantly enhanced recovery of the KaMA structure. Reinforcing the KaMA with 20 wt.% GOPD resulted in enhanced fibroblast proliferation (2.5-times) and spreading (5.7 times) after 5 days of culture. Based on these findings, KaMA-GOPD hydrogel could be used for cell delivery through the injection process and applied as a suitable bio-ink for 3D-bioproiting process.


Subject(s)
Carrageenan/chemistry , Graphite/chemistry , Hydrogels/chemistry , Indoles/chemistry , Polymers/chemistry , Animals , Carrageenan/chemical synthesis , Cell Survival/drug effects , Compressive Strength , Fibroblasts/drug effects , Graphite/chemical synthesis , Hydrogels/chemical synthesis , Indoles/chemical synthesis , Mice , Nanoparticles/chemistry , Polymers/chemical synthesis , Porosity , Tissue Engineering/methods , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...