Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(1): 818-825, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31820641

ABSTRACT

PbS quantum dots (QDs) have gained significant attention as promising solution-based materials for third generation of photovoltaic (PV) devices, thanks to their size-tunable band gap, air stability, and low-cost solution processing. Gold (Au), despite its high cost, is the standard electrode in the conventional PbS QD PV architecture because of its perfect alignment with valence levels of PbS QDs. However, to comply with manufacturing requirements for scalable device processing, alternative cost-effective electrodes are urgently required. Here, we employed an interface engineering approach and deposited poly(3-hexylthiophene-2,5-diyl) as a hole transport layer on 1,2-ethanedithiol-capped PbS QDs in order to adjust the valence band of QDs with the work function of inexpensive copper (Cu) electrodes. In fact, this is the first report of a Au-free PbS QD PV system employing the conventional device structure. Our Cu-based device shows a maximum power conversion efficiency (PCE) of 8.7% which is comparable with that of the Au-based device (10.2%). Interestingly, the P3HT-based device shows improved stability with relatively 10% PCE loss after 230 h under continuous illumination. Moreover, using an ultrathin Cu electrode, a semitransparent PbS QD PV is fabricated with a remarkably high average visible transparency of 26% and a PCE of 7.4%.

2.
Nanoscale ; 11(47): 22832-22840, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31755484

ABSTRACT

Lead sulfide (PbS) quantum dots (QDs) are promising materials in solution-processed photovoltaic (PV) devices due to their tunable bandgap and low-cost processing. Replacing the long oleic acid ligands of the as-synthesized QDs with shorter ligands is a key step for making functional QD PVs with correctly tuned band energies and reduced non-radiative recombination centers. In this work, we study the effect of ultraviolet (UV) treatment of PbS QD layers on the QD surface states during ligand exchange. We demonstrate that this straightforward approach effectively reduces the surface trap states and passivates the surface of QDs. We find that UV treatment reduces the density of hydroxyl groups attached to the QD surface and improves the bonding of short ligands to the QD surface. Multiple analyses show the reduction of nonradiative recombination centers for the UV-treated sample. The power conversion efficiency (PCE) of our optimized PbS QD device reached 10.7% (vs. 9% for the control device) and was maintained above 10% after 230 h of constant illumination.

3.
ACS Omega ; 4(16): 16840-16846, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31646230

ABSTRACT

Here, we study the influence of guanidinium (GUA) ions on the open-circuit voltage (V oc) in the (GUA) x (MA)1-x PbI3 based perovskite solar cells. We demonstrate that incorporation of GUA forms electronic and ionic accumulation regions at the interface of the electron transporting layer and perovskite absorber layer. Our electrochemical impedance spectroscopy results prove that the formed accumulation region is associated with the enhanced surface charge capacitance and photovoltage. Furthermore, we also demonstrate the influence of the GUA ions on the enhanced interfacial and bulk electronic properties due to more efficient charge transfer between the bulk and interfaces and the reduced electronic defect energy levels.

4.
ACS Appl Mater Interfaces ; 11(29): 26047-26052, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31257844

ABSTRACT

PbS quantum dots (QDs) have been extensively studied for photovoltaic applications, thanks to their facile and low-cost fabrication processing and interesting physical properties such as size dependent and tunable band gap. However, the performance of PbS QD-based solar cells is highly sensitive to the humidity level in the ambient air, which is a serious obstacle toward its practical applications. Although it has been previously revealed that oxygen doping of the hole transporting layer can mitigate the cause of this issue, the suggested methods to recover the device performance are time-consuming and relatively costly. Here, we report a low-power oxygen plasma treatment as a rapid and low-cost method to effectively recover the device performance and stability. Our optimization results show that a 10 min treatment is the best condition, resulting in an enhanced power conversion efficiency from 6.9% for the as-prepared device to 9% for the plasma treated one. Moreover, our modified device shows long-term shelf-life stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...