Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Oncol (Dordr) ; 42(4): 491-504, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31025257

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is the fourth most common cause of cancer-related death in the USA. Local progression, early tumor dissemination and low efficacy of current treatments are the major reasons for its high mortality rate. The ERBB family is over-expressed in PDAC and plays essential roles in its tumorigenesis; however, single-targeted ERBB inhibitors have shown limited activity in this disease. Here, we examined the anti-tumor activity of dacomitinib, a pan-ERBB receptor inhibitor, on PDAC cells. METHODS: Anti-proliferative effects of dacomitinib were determined using a cell proliferation assay and crystal violet staining. Annexin V/PI staining, radiation therapy and cell migration and invasion assays were carried out to examine the effects of dacomitinib on apoptosis, radio-sensitivity and cell motility, respectively. Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analyses were applied to elucidate the molecular mechanisms underlying the anti-tumor activity of dacomitinib. RESULTS: We found that dacomitinib diminished PDAC cell proliferation via inhibition of FOXM1 and its targets Aurora kinase B and cyclin B1. Moreover, we found that dacomitinib induced apoptosis and potentiated radio-sensitivity via inhibition of the anti-apoptotic proteins survivin and MCL1. Treatment with dacomitinib attenuated cell migration and invasion through inhibition of the epithelial-to-mesenchymal transition (EMT) markers ZEB1, Snail and N-cadherin. In contrast, we found that the anti-tumor activity of single-targeted ERBB agents including cetuximab (anti-EGFR mAb), trastuzumab (anti-HER2 mAb), H3.105.5 (anti-HER3 mAb) and erlotinib (EGFR small molecule inhibitor) were marginal. CONCLUSIONS: Our findings indicate that dacomitinib-mediated blockade of the ERBB receptors yields advantages over single-targeted ERBB inhibition and provide a rationale for further investigation of the therapeutic potential of dacomitinib in the treatment of ERBB-driven PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , ErbB Receptors/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Quinazolinones/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , ErbB Receptors/metabolism , Humans , Models, Biological , Neoplasm Invasiveness , Quinazolinones/pharmacology , Radiation Tolerance , Pancreatic Neoplasms
2.
Anticancer Drugs ; 29(10): 1011-1020, 2018 11.
Article in English | MEDLINE | ID: mdl-30096128

ABSTRACT

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy worldwide. Development of chemoresistance and peritoneal dissemination are the major reasons for low survival rate in the patients. The bromodomain and extraterminal domain (BET) proteins are known as epigenetic 'readers,' and their inhibitors are novel epigenetic strategies for cancer treatment. Accumulating body of evidence indicates that epigenetic modifications have critical roles in development of EOC, and overexpression of the BET family is a key step in the induction of important oncogenes. Here, we examined the mechanistic activity of I-BET151, a pan-inhibitor of the BET family, in therapy-resistant EOC cells. Our findings showed that I-BET151 diminished cell growth, clonogenic potential, and induced apoptosis. I-BET151 inhibited cell proliferation through down-modulation of FOXM1 and its targets aurora kinase B and cyclin B1. I-BET151 attenuated migration and invasion of the EOC cells by down-regulation of epithelial-mesenchymal transition markers fibronectin, ZEB2, and N-cadherin. I-BET151 synergistically enhanced cisplatin chemosensitivity by down-regulation of survivin and Bcl-2. Our data provide insights into the mechanistic activity of I-BET151 and suggest that BET inhibition has potential as a therapeutic strategy in therapy-resistant EOC. Further in vivo investigations on the therapeutic potential of I-BET151 in EOC are warranted.


Subject(s)
Carcinoma, Ovarian Epithelial/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacology , Ovarian Neoplasms/drug therapy , Proteins/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cisplatin/pharmacology , Down-Regulation/drug effects , Drug Resistance, Neoplasm , Drug Synergism , Epigenesis, Genetic/genetics , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Ovarian Neoplasms/pathology
3.
Int J Biochem Cell Biol ; 99: 1-9, 2018 06.
Article in English | MEDLINE | ID: mdl-29567488

ABSTRACT

Epithelial ovarian cancer (EOC) has exhibited marginal improvement in survival rate, despite advances in surgical debulking and chemotherapy regimens. Although the majority of EOC patients achieve a clinical remission after induction therapy, over 80% relapse and succumb to chemoresistant disease. In this regard, it is of paramount importance to elucidate molecular mechanisms and signaling pathways which promote therapy resistance in EOC in order to devise novel and more effective treatment strategies. In this study, we showed that activation of nuclear factor-κB (NF-κB) is significantly higher in therapy-resistant EOC cells compared to chemosensitive counterparts, which was positively associated with resistance to cisplatin, carboplatin, paclitaxel and erlotinib. Bay 11-7082, a highly selective NF-κB inhibitor, reduced cell proliferation, clonogenicity and anoikis resistance in the therapy-resistant EOC cells and induced apoptotic cell death. Moreover, Bay 11-7082 decreased the expression of pro-survival, inflammatory and metastatic genes and synergistically increased anti-proliferative efficacy of cisplatin, carboplatin, paclitaxel and erlotinib. Altogether, these findings suggest that NF-κB is an attractive therapeutic target in EOC to be exploited in translational oncology and Bay 11-7082 is a potential anti-cancer drug to overcome chemoresistance and inhibit proliferation of the EOC cells.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , NF-kappa B/antagonists & inhibitors , Ovarian Neoplasms/pathology , Anoikis/drug effects , Antineoplastic Agents/pharmacology , Female , Humans , NF-kappa B/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Tumor Cells, Cultured
4.
Sci Rep ; 7: 45954, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28383032

ABSTRACT

Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy. Despite initial therapeutic response, the majority of advanced-stage patients relapse and succumb to chemoresistant disease. Overcoming drug resistance is the key to successful treatment of EOC. Members of vascular endothelial growth factor (VEGF) family are overexpressed in EOC and play key roles in its malignant progression though their contribution in development of the chemoresistant disease remains elusive. Here we show that expression of the VEGF family is higher in therapy-resistant EOC cells compared to sensitive ones. Overexpression of VEGFR2 correlated with resistance to cisplatin and combination with VEGFR2-inhibitor apatinib synergistically increased cisplatin sensitivity. Tivozanib, a pan-inhibitor of VEGF receptors, reduced proliferation of the chemoresistant EOC cells through induction of G2/M cell cycle arrest and apoptotic cell death. Tivozanib decreased invasive potential of these cells, concomitant with reduction of intercellular adhesion molecule-1 (ICAM-1) and diminishing the enzymatic activity of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-2 (MMP-2). Moreover, tivozanib synergistically enhanced anti-tumour effects of EGFR-directed therapies including erlotinib. These findings suggest that the VEGF pathway has potential as a therapeutic target in therapy-resistant EOC and VEGFR blockade by tivozanib may yield stronger anti-tumour efficacy and circumvent resistance to EGFR-directed therapies.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Ovarian Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Quinolines/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Anoikis/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Clone Cells , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , G2 Phase/drug effects , Humans , NF-kappa B/metabolism , Neoplasm Invasiveness , Ovarian Neoplasms/pathology , Phenylurea Compounds/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/pharmacology , Signal Transduction/drug effects , Urokinase-Type Plasminogen Activator/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
5.
Sci Rep ; 7: 44075, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287096

ABSTRACT

Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Phenylurea Compounds/therapeutic use , Quinolines/therapeutic use , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Anoikis , Brain Neoplasms/complications , Cell Adhesion , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Gefitinib , Glioblastoma/complications , Humans , Neovascularization, Pathologic/complications , Neovascularization, Pathologic/drug therapy , Quinazolines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...