Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120380, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34562863

ABSTRACT

The pressing need to develop a specific analytical sensor that can identify and quantify Fe(II) without a cytotoxic response was the major motivation drive in this work. The turn-on fluorescent sensor here described can successfully detect Fe(II) and discriminate this ion from other analytes that commonly act as interferents in biological media. Moreover, this reduced fluoresceinamine-based sensor has a high photostability and high dissociation constant, which is an indication that the complex obtained between reduced fluoresceinamine (RFL) and Fe(II) is highly stable. This fluorescence-based sensor has a binding mechanism of 1:1 and a positive cooperativity was found between analyte and sensor. The detection, quantification and sensitivity parameters of the sensor were determined: 21.6 ± 0.1 µM; 65.6 ± 0.1 µM and 48 ± 3 (×107) µM, respectively. To evaluate a possible cytotoxicity effect an erythrocyte assay was performed and the obtained data were evaluated considering CdTe Quantum Dots (QDs) passivated with mercaptoacetic acid has experimental control. According to the resulting data RFL is not cytotoxic even when used in high concentrations, 660 mM. On the other hand QDs are quite different. Indeed it was proven that these heavy metal-based nanoparticles are responsible for 40% erytrocytes hemolysis in concentrations of 600 mM.


Subject(s)
Cadmium Compounds , Quantum Dots , Ferrous Compounds , Fluorescent Dyes , Iron , Quantum Dots/toxicity , Spectrometry, Fluorescence , Tellurium
2.
J Comput Chem ; 30(16): 2752-63, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19399915

ABSTRACT

A set of 44 Zinc-ligand bond-lengths and of 60 ligand-metal-ligand bond angles from 10 diverse transition-metal complexes, representative of the coordination spheres of typical biological Zn systems, were used to evaluate the performance of a total of 18 commonly available density functionals in geometry determination. Five different basis sets were considered for each density functional, namely two all-electron basis sets (a double-zeta and triple-zeta formulation) and three basis sets including popular types of effective-core potentials: Los Alamos, Steven-Basch-Krauss, and Stuttgart-Dresden. The results show that there are presently several better alternatives to the popular B3LYP density functional for the determination of Zn-ligand bond-lengths and angles. BB1K, MPWB1K, MPW1K, B97-2 and TPSS are suggested as the strongest alternatives for this effect presently available in most computational chemistry software packages. In addition, the results show that the use of effective-core potentials (in particular Stuttgart-Dresden) has a very limited impact, in terms of accuracy, in the determination of metal-ligand bond-lengths and angles in Zinc-complexes, and is a good and safe alternative to the use of an all-electron basis set such as 6-31G(d) or 6-311G(d,p).


Subject(s)
Quantum Theory , Zinc/chemistry , Computer Simulation , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...