Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Placenta ; 47: 1-11, 2016 11.
Article in English | MEDLINE | ID: mdl-27780530

ABSTRACT

Previous studies have shown that human and mouse placentas have hematopoietic potential during mid-gestation. In this investigation, we used histological and immunohistological approaches to visualize hematopoietic cells in mouse placenta between 9.5 and 12.5 days of gestation (gd), identifying their topography and niche. Putative hematopoietic foci were present on 10.5 and 11.5 gd but not 9.5 or 12.5 gd and was restricted to the placental labyrinth. Two major niches each with distinctive hematopoietic cell clusters were present. One type of hematopoietic cell cluster involved the chorioallantoic vasculature and fetal vessels near the chorionic plate. These clusters resembled the hematopoietic stem cells produced by large embryonic arteries such as aorta that persist in postnatal marrow. The other type of hematopoietic cell cluster identified was at the opposite side of labyrinth next to the junctional zone and was composed of erythropoietic foci. Our results suggest that mouse placenta not only produces hematopoietic stem/progenitor cells but also a second wave of primitive erythrocytes that may support a rapid, mid-pregnancy, fetal growth trajectory. Our data also point to a close relationships in the origins of hematopoietic and endothelial cells within placenta.


Subject(s)
Hematopoietic Stem Cells/cytology , Placenta/cytology , Placentation/physiology , Stem Cell Niche/physiology , Animals , Chorion/cytology , Chorion/metabolism , Female , Hematopoietic Stem Cells/metabolism , Mice , Placenta/metabolism , Pregnancy
2.
PLoS One ; 11(5): e0155041, 2016.
Article in English | MEDLINE | ID: mdl-27158977

ABSTRACT

Yellow fever continues to be an important epidemiological problem in Africa and South America even though the disease can be controlled by vaccination. The vaccine has been produced since 1937 and is based on YFV 17DD chicken embryo infection. However, little is known about the histopathological background of virus infection and replication in this model. Here we show by morphological and molecular methods (brightfield and confocal microscopies, immunofluorescence, nested-PCR and sequencing) the kinetics of YFV 17DD infection in chicken embryos with 9 days of development, encompassing 24 to 96 hours post infection. Our principal findings indicate that the main cells involved in virus production are myoblasts with a mesenchymal shape, which also are the first cells to express virus proteins in Gallus gallus embryos at 48 hours after infection. At 72 hours post infection, we observed an increase of infected cells in embryos. Many sites are thus affected in the infection sequence, especially the skeletal muscle. We were also able to confirm an increase of nervous system infection at 96 hours post infection. Our data contribute to the comprehension of the pathogenesis of YF 17DD virus infection in Gallus gallus embryos.


Subject(s)
Yellow Fever/pathology , Animals , Chick Embryo , Kinetics , Microscopy, Confocal
SELECTION OF CITATIONS
SEARCH DETAIL
...