Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 223(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38477922
2.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496560

ABSTRACT

We previously reported that in the absence of Prostaglandin D2 synthase (L-PGDS) peripheral nerves are hypomyelinated in development and that with aging they present aberrant myelin sheaths. We now demonstrate that L-PGDS expressed in Schwann cells is part of a coordinated program aiming at preserving myelin integrity. In vivo and in vitro lipidomic, metabolomic and transcriptomic analyses confirmed that myelin lipids composition, Schwann cells energetic metabolism and key enzymes controlling these processes are altered in the absence of L-PGDS. Moreover, Schwann cells undergo a metabolic rewiring and turn to acetate as the main energetic source. Further, they produce ketone bodies to ensure glial cell and neuronal survival. Importantly, we demonstrate that all these changes correlate with morphological myelin alterations and describe the first physiological pathway implicated in preserving PNS myelin. Collectively, we posit that myelin lipids serve as a reservoir to provide ketone bodies, which together with acetate represent the adaptive substrates Schwann cells can rely on to sustain the axo-glial unit and preserve the integrity of the PNS.

3.
Neuron ; 112(2): 209-229.e11, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37972594

ABSTRACT

Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.


Subject(s)
Angiogenesis , Endothelial Cells , Endothelial Cells/metabolism , Peripheral Nerves/physiology , Neovascularization, Physiologic , Axons , Nerve Regeneration/physiology
4.
Nature ; 623(7986): 415-422, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914939

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1ß (IL-1ß)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1ß+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1ß activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1ß axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.


Subject(s)
Inflammation , Interleukin-1beta , Pancreatic Neoplasms , Tumor-Associated Macrophages , Humans , Carcinogenesis , Carcinoma, Pancreatic Ductal/complications , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Dinoprostone/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor Necrosis Factors/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
5.
Virchows Arch ; 483(2): 225-235, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37291275

ABSTRACT

Perineural invasion (PNI) is a common feature in pancreatic ductal adenocarcinoma (PDAC) and correlates with an aggressive tumor behavior already at early stages of disease. PNI is currently considered as a "present vs. absent" feature, and a severity score system has not yet been established. The aim of the present study was thus to develop and validate a score system for PNI and to correlate it with other prognostic features. In this monocentric retrospective study, 356 consecutive PDAC patients (61.8% upfront surgery patients, 38.2% received neoadjuvant therapy) were analyzed. PNI was scored as follows: 0: absent; 1: the presence of neoplasia along nerves < 3 mm in caliber; and 2: neoplastic infiltration of nerve fibers ≥ 3 mm and/or massive perineural infiltration and/or the presence of necrosis of the infiltrated nerve bundle. For every PNI grade, the correlation with other pathological features, disease-free survival (DFS), and disease-specific survival (DSS) were analyzed. Uni- and multivariate analysis for DFS and DSS were also performed. PNI was found in 72.5% of the patients. Relevant trends between PNI score and tumor differentiation grade, lymph node metastases, vascular invasion, and surgical margins status were found. The latter was the only parameter statistically correlated with the proposed score. The agreement between pathologists was substantial (Cohen's K 0.61). PNI severity score significantly correlated also with decreased DFS and DSS at univariate analysis (p < 0.001). At multivariate analysis, only the presence of lymph node metastases was an independent predictor of DFS (HR 2.235 p < 0.001). Lymph node metastases (HR 2.902, p < 0.001) and tumor differentiation grade (HR 1.677, p = 0.002) were independent predictors of DSS. Our newly developed PNI score correlates with other features of PDAC aggressiveness and proved to have a prognostic role though less robust than lymph nodes metastases and tumor differentiation grade. A prospective validation is needed.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Retrospective Studies , Lymphatic Metastasis , Neoplasm Invasiveness/pathology , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms
6.
Elife ; 122023 02 13.
Article in English | MEDLINE | ID: mdl-36779701

ABSTRACT

In the developing central nervous system, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes, which form myelin around axons. Oligodendrocytes and myelin are essential for the function of the central nervous system, as evidenced by the severe neurological symptoms that arise in demyelinating diseases such as multiple sclerosis and leukodystrophy. Although many cell-intrinsic mechanisms that regulate oligodendrocyte development and myelination have been reported, it remains unclear whether interactions among oligodendrocyte-lineage cells (OPCs and oligodendrocytes) affect oligodendrocyte development and myelination. Here, we show that blocking vesicle-associated membrane protein (VAMP) 1/2/3-dependent exocytosis from oligodendrocyte-lineage cells impairs oligodendrocyte development, myelination, and motor behavior in mice. Adding oligodendrocyte-lineage cell-secreted molecules to secretion-deficient OPC cultures partially restores the morphological maturation of oligodendrocytes. Moreover, we identified L-type prostaglandin D synthase as an oligodendrocyte-lineage cell-secreted protein that promotes oligodendrocyte development and myelination in vivo. These findings reveal a novel autocrine/paracrine loop model for the regulation of oligodendrocyte and myelin development.


Subject(s)
Myelin Sheath , Oligodendroglia , Animals , Mice , Oligodendroglia/metabolism , Myelin Sheath/metabolism , Neurogenesis/physiology , Exocytosis , Cell Differentiation/physiology
7.
Annu Rev Neurosci ; 45: 561-580, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35440141

ABSTRACT

Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.


Subject(s)
Peripheral Nervous System , Schwann Cells , Axons/metabolism , Central Nervous System/physiology , Neuroglia/physiology , Peripheral Nervous System/physiology , Schwann Cells/metabolism
8.
J Neurosci ; 42(12): 2433-2447, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35110388

ABSTRACT

We previously reported that a-disintegrin and metalloproteinase (ADAM)17 is a key protease regulating myelin formation. We now describe a role for ADAM17 during the Wallerian degeneration (WD) process. Unexpectedly, we observed that glial ADAM17, by regulating p75NTR processing, cell autonomously promotes remyelination, while neuronal ADAM17 is dispensable. Accordingly, p75NTR abnormally accumulates specifically when ADAM17 is maximally expressed leading to a downregulation of tissue plasminogen activator (tPA) expression, excessive fibrin accumulation over time, and delayed remyelination. Mutant mice also present impaired macrophage recruitment and defective nerve conduction velocity (NCV). Thus, ADAM17 expressed in Schwann cells, controls the whole WD process, and its absence hampers effective nerve repair. Collectively, we describe a previously uncharacterized role for glial ADAM17 during nerve regeneration. Based on the results of our study, we posit that, unlike development, glial ADAM17 promotes remyelination through the regulation of p75NTR-mediated fibrinolysis.SIGNIFICANCE STATEMENT The α-secretase a-disintegrin and metalloproteinase (ADAM)17, although relevant for developmental PNS myelination, has never been investigated in Wallerian degeneration (WD). We now unravel a new mechanism of action for this protease and show that ADAM17 cleaves p75NTR, regulates fibrin clearance, and eventually fine-tunes remyelination. The results presented in this study provide important insights into the complex regulation of remyelination following nerve injury, identifying in ADAM17 and p75NTR a new signaling axis implicated in these events. Modulation of this pathway could have important implications in promoting nerve remyelination, an often-inefficient process, with the aim of restoring a functional axo-glial unit.


Subject(s)
ADAM17 Protein , Receptor, Nerve Growth Factor , Remyelination , ADAM17 Protein/metabolism , Animals , Disintegrins , Fibrin , Fibrinolysis , Mice , Receptor, Nerve Growth Factor/metabolism , Tissue Plasminogen Activator , Wallerian Degeneration
9.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34183414

ABSTRACT

Demyelination is a key pathogenic feature of multiple sclerosis (MS). Here, we evaluated the astrocyte contribution to myelin loss and focused on the neurotrophin receptor TrkB, whose up-regulation on the astrocyte finely demarcated chronic demyelinated areas in MS and was paralleled by neurotrophin loss. Mice lacking astrocyte TrkB were resistant to demyelination induced by autoimmune or toxic insults, demonstrating that TrkB signaling in astrocytes fostered oligodendrocyte damage. In vitro and ex vivo approaches highlighted that astrocyte TrkB supported scar formation and glia proliferation even in the absence of neurotrophin binding, indicating TrkB transactivation in response to inflammatory or toxic mediators. Notably, our neuropathological studies demonstrated copper dysregulation in MS and model lesions and TrkB-dependent expression of copper transporter (CTR1) on glia cells during neuroinflammation. In vitro experiments evidenced that TrkB was critical for the generation of glial intracellular calcium flux and CTR1 up-regulation induced by stimuli distinct from neurotrophins. These events led to copper uptake and release by the astrocyte, and in turn resulted in oligodendrocyte loss. Collectively, these data demonstrate a pathogenic demyelination mechanism via the astrocyte release of copper and open up the possibility of restoring copper homeostasis in the white matter as a therapeutic target in MS.


Subject(s)
Astrocytes/metabolism , Astrocytes/pathology , Copper/metabolism , Multiple Sclerosis/metabolism , Animals , Biological Transport , Chronic Disease , Cicatrix/pathology , Cuprizone , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Humans , Inflammation/pathology , Ligands , Membrane Transport Proteins/metabolism , Mice, Knockout , Myelin Sheath/metabolism , Nerve Growth Factors/metabolism , Receptor, trkB/metabolism , Up-Regulation , White Matter/pathology
10.
Nat Neurosci ; 24(1): 153, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33184514
11.
Nat Neurosci ; 23(10): 1179-1181, 2020 10.
Article in English | MEDLINE | ID: mdl-32901153

Subject(s)
Axons , Schwann Cells
12.
Glia ; 68(6): 1148-1164, 2020 06.
Article in English | MEDLINE | ID: mdl-31851405

ABSTRACT

Myelin, one of the most important adaptations of vertebrates, is essential to ensure efficient propagation of the electric impulse in the nervous system and to maintain neuronal integrity. In the central nervous system (CNS), the development of oligodendrocytes and the process of myelination are regulated by the coordinated action of several positive and negative cell-extrinsic factors. We and others previously showed that secretases regulate the activity of proteins essential for myelination. We now report that the neuronal α-secretase ADAM17 controls oligodendrocyte differentiation and myelin formation in the CNS. Ablation of Adam17 in neurons impairs in vivo and in vitro oligodendrocyte differentiation, delays myelin formation throughout development and results in hypomyelination. Furthermore, we show that this developmental defect is, in part, the result of altered Notch/Jagged 1 signaling. Surprisingly, in vivo conditional loss of Adam17 in immature oligodendrocytes has no effect on myelin formation. Collectively, our data indicate that the neuronal α-secretase ADAM17 is required for proper CNS myelination. Further, our studies confirm that secretases are important post-translational regulators of myelination although the mechanisms controlling CNS and peripheral nervous system (PNS) myelination are distinct.


Subject(s)
ADAM17 Protein/metabolism , Central Nervous System/metabolism , Myelin Sheath/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , ADAM17 Protein/genetics , Animals , Cell Differentiation/physiology , Central Nervous System/cytology , Mice, Transgenic , Neurogenesis/physiology
13.
Glia ; 68(1): 95-110, 2020 01.
Article in English | MEDLINE | ID: mdl-31479164

ABSTRACT

We have previously reported that prostaglandin D2 Synthase (L-PGDS) participates in peripheral nervous system (PNS) myelination during development. We now describe the role of L-PGDS in the resolution of PNS injury, similarly to other members of the prostaglandin synthase family, which are important for Wallerian degeneration (WD) and axonal regeneration. Our analyses show that L-PGDS expression is modulated after injury in both sciatic nerves and dorsal root ganglia neurons, indicating that it might play a role in the WD process. Accordingly, our data reveals that L-PGDS regulates macrophages phagocytic activity through a non-cell autonomous mechanism, allowing myelin debris clearance and favoring axonal regeneration and remyelination. In addition, L-PGDS also appear to control macrophages accumulation in injured nerves, possibly by regulating the blood-nerve barrier permeability and SOX2 expression levels in Schwann cells. Collectively, our results suggest that L-PGDS has multiple functions during nerve regeneration and remyelination. Based on the results of this study, we posit that L-PGDS acts as an anti-inflammatory agent in the late phases of WD, and cooperates in the resolution of the inflammatory response. Thus, pharmacological activation of the L-PGDS pathway might prove beneficial in resolving peripheral nerve injury.


Subject(s)
Intramolecular Oxidoreductases/biosynthesis , Lipocalins/biosynthesis , Macrophage Activation/physiology , Nerve Regeneration/physiology , Sciatic Neuropathy/enzymology , Animals , Female , Intramolecular Oxidoreductases/genetics , Lipocalins/genetics , Male , Mice , Mice, Inbred C57BL , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , Sciatic Neuropathy/genetics , Sciatic Neuropathy/pathology
14.
Cancers (Basel) ; 11(7)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31248001

ABSTRACT

Perineural invasion (PNI) is defined as the presence of neoplastic cells along nerves and/or within the different layers of nervous fibers: epineural, perineural and endoneural spaces. In pancreatic cancer-particularly in pancreatic ductal adenocarcinoma (PDAC)-PNI has a prevalence between 70 and 100%, surpassing any other solid tumor. PNI has been detected in the early stages of pancreatic cancer and has been associated with pain, increased tumor recurrence and diminished overall survival. Such an early, invasive and recurrent phenomenon is probably crucial for tumor growth and metastasis. PNI is a still not a uniformly characterized event; usually it is described only dichotomously ("present" or "absent"). Recently, a more detailed scoring system for PNI has been proposed, though not specific for pancreatic cancer. Previous studies have implicated several molecules and pathways in PNI, among which are secreted neurotrophins, chemokines and inflammatory cells. However, the mechanisms underlying PNI are poorly understood and several aspects are actively being investigated. In this review, we will discuss the main molecules and signaling pathways implicated in PNI and their roles in the PDAC.

16.
Front Cell Neurosci ; 13: 93, 2019.
Article in English | MEDLINE | ID: mdl-30949030

ABSTRACT

After damage, axons in the peripheral nervous system (PNS) regenerate and regrow following a process termed Wallerian degeneration, but the regenerative process is often incomplete and usually the system does not reach full recovery. Key steps to the creation of a permissive environment for axonal regrowth are the trans-differentiation of Schwann cells and the remodeling of the extracellular matrix (ECM). In this review article, we will discuss how proteases and secretases promote effective regeneration and remyelination. We will detail how they control neuregulin-1 (NRG-1) activity at the post-translational level, as the concerted action of alpha, beta and gamma secretases cooperates to balance activating and inhibitory signals necessary for physiological myelination and remyelination. In addition, we will discuss the role of other proteases in nerve repair, among which A Disintegrin And Metalloproteinases (ADAMs) and gamma-secretases substrates. Moreover, we will present how matrix metalloproteinases (MMPs) and proteases of the blood coagulation cascade participate in forming newly synthetized myelin and in regulating axonal regeneration. Overall, we will highlight how a deeper comprehension of secretases and proteases mechanism of action in Wallerian degeneration might be useful to develop new therapies with the potential of readily and efficiently improve the regenerative process.

18.
Hum Mol Genet ; 28(6): 992-1006, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30481294

ABSTRACT

Charcot-Marie-Tooth (CMT) neuropathies are a group of genetic disorders that affect the peripheral nervous system with heterogeneous pathogenesis and no available treatment. Axonal neuregulin 1 type III (Nrg1TIII) drives peripheral nerve myelination by activating downstream signaling pathways such as PI3K/Akt and MAPK/Erk that converge on master transcriptional regulators of myelin genes, such as Krox20. We reasoned that modulating Nrg1TIII activity may constitute a general therapeutic strategy to treat CMTs that are characterized by reduced levels of myelination. Here we show that genetic overexpression of Nrg1TIII ameliorates neurophysiological and morphological parameters in a mouse model of demyelinating CMT1B, without exacerbating the toxic gain-of-function that underlies the neuropathy. Intriguingly, the mechanism appears not to be related to Krox20 or myelin gene upregulation, but rather to a beneficial rebalancing in the stoichiometry of myelin lipids and proteins. Finally, we provide proof of principle that stimulating Nrg1TIII signaling, by pharmacological suppression of the Nrg1TIII inhibitor tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17), also ameliorates the neuropathy. Thus, modulation of Nrg1TIII by TACE/ADAM17 inhibition may represent a general treatment for hypomyelinating neuropathies.


Subject(s)
Axons/metabolism , Charcot-Marie-Tooth Disease/etiology , Charcot-Marie-Tooth Disease/metabolism , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Neuregulin-1/metabolism , Signal Transduction , Animals , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Early Growth Response Protein 2/metabolism , Electrophysiological Phenomena , Ganglia, Spinal/metabolism , Gene Expression , Lipid Metabolism , Mice , Mice, Transgenic , Myelin Sheath/metabolism , Neuregulin-1/genetics , Schwann Cells/metabolism
19.
Hum Mol Genet ; 28(8): 1260-1273, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30535360

ABSTRACT

Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 (NRG1) type III regulate Schwann cell fate and myelination. Here we ask if modulating NRG1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we improved the myelination defects by early overexpression of NRG1 type III. Surprisingly, the improvement was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 and oligodendrocyte myelin glycoprotein. We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial NRG1 type III signaling has beneficial effects and improves myelination defects during development in a model of CHN.


Subject(s)
Myelin Sheath/metabolism , Neuregulin-1/genetics , Neuregulin-1/physiology , Action Potentials , Animals , Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Gene Knock-In Techniques/methods , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/genetics , Neuregulin-1/metabolism , Neuroglia/metabolism , Neurons/metabolism , Peripheral Nerves/metabolism , Schwann Cells/metabolism , Signal Transduction/physiology
20.
Methods Mol Biol ; 1791: 115-129, 2018.
Article in English | MEDLINE | ID: mdl-30006705

ABSTRACT

Our understanding of the processes controlling peripheral nervous system myelination have been significantly benefited by the development of an in vitro myelinating culture system in which primary Schwann cells are cocultured together with primary sensory neurons. In this chapter, we describe the protocol currently used in our laboratories to establish Schwann cells neuronal myelinating cocultures. We also include a detailed description of the various substrates that can be used to establish it.


Subject(s)
Coculture Techniques , Posterior Horn Cells/cytology , Primary Cell Culture , Schwann Cells/cytology , Animals , Biomarkers , Female , Mice , Posterior Horn Cells/metabolism , Posterior Horn Cells/ultrastructure , Pregnancy , Primary Cell Culture/methods , Rats , Schwann Cells/metabolism , Schwann Cells/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...