Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0014624, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917423

ABSTRACT

The discovery of antimicrobials with novel mechanisms of action is crucial to tackle the foreseen global health crisis due to antimicrobial resistance. Bacterial two-component signaling systems (TCSs) are attractive targets for the discovery of novel antibacterial agents. TCS-encoding genes are found in all bacterial genomes and typically consist of a sensor histidine kinase (HK) and a response regulator. Due to the conserved Bergerat fold in the ATP-binding domain of the TCS HK and the human chaperone Hsp90, there has been much interest in repurposing inhibitors of Hsp90 as antibacterial compounds. In this study, we explore the chemical space of the known Hsp90 inhibitor scaffold 3,4-diphenylpyrazole (DPP), building on previous literature to further understand their potential for HK inhibition. Six DPP analogs inhibited HK autophosphorylation in vitro and had good antimicrobial activity against Gram-positive bacteria. However, mechanistic studies showed that their antimicrobial activity was related to damage of bacterial membranes. In addition, DPP analogs were cytotoxic to human embryonic kidney cell lines and induced the cell arrest phenotype shown for other Hsp90 inhibitors. We conclude that these DPP structures can be further optimized as specific disruptors of bacterial membranes providing binding to Hsp90 and cytotoxicity are lowered. Moreover, the X-ray crystal structure of resorcinol, a substructure of the DPP derivatives, bound to the HK CheA represents a promising starting point for the fragment-based design of novel HK inhibitors. IMPORTANCE: The discovery of novel antimicrobials is of paramount importance in tackling the imminent global health crisis of antimicrobial resistance. The discovery of novel antimicrobials with novel mechanisms of actions, e.g., targeting bacterial two-component signaling systems, is crucial to bypass existing resistance mechanisms and stimulate pharmaceutical innovations. Here, we explore the possible repurposing of compounds developed in cancer research as inhibitors of two-component systems and investigate their off-target effects such as bacterial membrane disruption and toxicity. These results highlight compounds that are promising for further development of novel bacterial membrane disruptors and two-component system inhibitors.

2.
Front Toxicol ; 4: 864441, 2022.
Article in English | MEDLINE | ID: mdl-35516525

ABSTRACT

Application of adverse outcome pathways (AOP) and integration of quantitative in vitro to in vivo extrapolation (QIVIVE) may support the paradigm shift in toxicity testing to move from apical endpoints in test animals to more mechanism-based in vitro assays. Here, we developed an AOP of proximal tubule injury linking a molecular initiating event (MIE) to a cascade of key events (KEs) leading to lysosomal overload and ultimately to cell death. This AOP was used as a case study to adopt the AOP concept for systemic toxicity testing and risk assessment based on in vitro data. In this AOP, nephrotoxicity is thought to result from receptor-mediated endocytosis (MIE) of the chemical stressor, disturbance of lysosomal function (KE1), and lysosomal disruption (KE2) associated with release of reactive oxygen species and cytotoxic lysosomal enzymes that induce cell death (KE3). Based on this mechanistic framework, in vitro readouts reflecting each KE were identified. Utilizing polymyxin antibiotics as chemical stressors for this AOP, the dose-response for each in vitro endpoint was recorded in proximal tubule cells from rat (NRK-52E) and human (RPTEC/TERT1) in order to (1) experimentally support the sequence of key events (KEs), to (2) establish quantitative relationships between KEs as a basis for prediction of downstream KEs based on in vitro data reflecting early KEs and to (3) derive suitable in vitro points of departure for human risk assessment. Time-resolved analysis was used to support the temporal sequence of events within this AOP. Quantitative response-response relationships between KEs established from in vitro data on polymyxin B were successfully used to predict in vitro toxicity of other polymyxin derivatives. Finally, a physiologically based kinetic (PBK) model was utilized to transform in vitro effect concentrations to a human equivalent dose for polymyxin B. The predicted in vivo effective doses were in the range of therapeutic doses known to be associated with a risk for nephrotoxicity. Taken together, these data provide proof-of-concept for the feasibility of in vitro based risk assessment through integration of mechanistic endpoints and reverse toxicokinetic modelling.

3.
J Vet Pharmacol Ther ; 42(1): 74-84, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30175535

ABSTRACT

Aspergillosis is a condition causing serious morbidity and mortality in captive penguins and other bird species. It can be treated with antifungal drugs, such as voriconazole. However, the pharmacokinetics of voriconazole are variable between different animal and bird species. Therefore, the pharmacokinetics of voriconazole were investigated in this study in Magellanic penguins. Pharmacokinetic models were constructed and applied to predict the pharmacokinetics of voriconazole during long-term treatment in Magellanic penguins, since the voriconazole treatment duration in chronic aspergillosis cases can last up to several months. Plasma voriconazole concentration-time data from adult Magellanic penguins (Spheniscus magellanicus; n = 15) following a single oral (PO) dose of either 2.5 mg/kg or 5 mg/kg in a herring in three separate study periods 7-12 months apart were collected. Mean plasma voriconazole concentrations were above the targeted MIC for Aspergillus fumigatus for 2 hr following a single 2.5 mg/kg voriconazole dose while the plasma concentrations exceeded the MIC for least 24 hr following a 5 mg/kg dose. Nonlinear mixed-effects modeling was used to fit two pharmacokinetic models, one with first-order and another with saturable elimination, to the single-dose data. Fits were good for both, as long as dose was included as a covariate for the first-order model so that clearance was lower and the half-life longer for animals receiving the 5 mg/kg dose. Although the single-dose data suggested saturated elimination at higher concentrations, the model with saturable elimination did not predict plasma voriconazole concentrations well for a clinical aspergillosis case receiving long-term treatment, possibly because of induction of metabolizing enzymes with chronic exposure. Pharmacokinetic models should accurately predict plasma drug concentrations for different dosage regimens in order to be applicable in the field. Future studies should focus on determining clearance at steady-state to be able to refine the pharmacokinetic models presented here and improve model performance for long-term oral voriconazole administration in Magellanic penguins.


Subject(s)
Antifungal Agents/pharmacokinetics , Spheniscidae/metabolism , Voriconazole/pharmacokinetics , Administration, Oral , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/blood , Chromatography, High Pressure Liquid/veterinary , Dose-Response Relationship, Drug , Female , Half-Life , Male , Models, Biological , Spheniscidae/blood , Voriconazole/administration & dosage , Voriconazole/blood
4.
BMC Vet Res ; 12(1): 185, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27596044

ABSTRACT

BACKGROUND: To optimize antimicrobial dosing in different animal species, pharmacokinetic information is necessary. Due to the plethora of cephalosporin antimicrobials and animal species in which they are used, assessment of pharmacokinetics in all species is unfeasible. In this study we aimed to describe pharmacokinetic data of cephalosporins by reviewing the available literature for food producing and companion animal species. We assessed the accuracy of interspecies extrapolation using allometric scaling techniques to determine pharmacokinetic characteristics of cephalosporins in animal species for which literature data is unavailable. We assessed the accuracy of allometric scaling by comparing the predicted and the published pharmacokinetic value in an animal species/humans not included in the allometric modelling. RESULTS: In general, excretion of cephalosporins takes place mainly through renal mechanisms in the unchanged form and volume of distribution is limited in all animal species. Differences in plasma protein binding capacity and elimination half-life are observed but available information was limited. Using allometric scaling, correlations between body weight (BW) and volume of distribution (Vd) and clearance (Cl) were R (2) > 0.97 and R (2) > 0.95 respectively for ceftazidime, ceftiofur, cefquinome and cefepime but not ceftriaxone. The allometric exponent ranged from 0.80 to 1.31 for Vd and 0.83 to 1.24 for Cl. Correlations on half-life ranged from R(2) 0.07-0.655 (literature) and R(2) 0.102-0.876 (calculated). CONCLUSIONS: Allometric scaling can be applied for interspecies extrapolation of cephalosporin pharmacokinetic parameters Vd and Cl, but not elimination half-life. We hypothesize that the accuracy could be improved by using more refined scaling techniques.


Subject(s)
Animals, Domestic/blood , Anti-Bacterial Agents/pharmacokinetics , Cephalosporins/pharmacokinetics , Models, Biological , Animals , Animals, Domestic/metabolism , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/metabolism , Body Weight/physiology , Cephalosporins/blood , Cephalosporins/metabolism , Humans , Veterinary Drugs/blood , Veterinary Drugs/metabolism , Veterinary Drugs/pharmacokinetics
5.
PLoS One ; 8(10): e77525, 2013.
Article in English | MEDLINE | ID: mdl-24204857

ABSTRACT

In 2011, Dutch animal production sectors started recording veterinary antimicrobial consumption. These data are used by the Netherlands Veterinary Medicines Authority to create transparency in and define benchmark indicators for veterinary consumption of antimicrobials. This paper presents the results of sector wide consumption of antimicrobials, in the form of prescriptions or deliveries, for all pig, veal calf, and broiler farms. Data were used to calculate animal defined daily dosages per year (ADDD/Y) per pig or veal calf farm. For broiler farms, number of animal treatment days per year was calculated. Furthermore, data were used to calculate the consumption of specific antimicrobial classes per administration route per pig or veal calf farm. The distribution of antimicrobial consumption per farm varied greatly within and between farm categories. All categories, except for rosé starter farms, showed a highly right skewed distribution with a long tail. Median ADDD/Y values varied from 1.2 ADDD/Y for rosé finisher farms to 83.2 ADDD/Y for rosé starter farms, with 28.6 ADDD/Y for white veal calf farms. Median consumption in pig farms was 9.3 ADDD/Y for production pig farms and 3.0 ADDD/Y for slaughter pig farms. Median consumption in broiler farms was 20.9 ATD/Y. Regarding specific antimicrobial classes, fluoroquinolones were mainly used on veal calf farms, but in low quantities: P75 range was 0 - 0.99 ADDD/Y, and 0 - 0.04 ADDD/Y in pig farms. The P75 range for 3(rd)/4(th)-generation cephalosporins was 0 - 0.07 ADDD/Y for veal calf farms, and 0 - 0.1 ADDD/Y for pig farms. The insights obtained from these results, and the full transparency obtained by monitoring antimicrobial consumption per farm, will help reduce antimicrobial consumption and endorse antimicrobial stewardship. The wide and skewed distribution in consumption has important practical and methodological implications for benchmarking, surveillance and future analysis of trends.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Animals , Cattle , Chickens , Netherlands , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...