Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Article in English | MEDLINE | ID: mdl-38752952

ABSTRACT

BACKGROUND: Quantified features of local conduction heterogeneity due to pathological alterations of myocardial tissue could serve as a marker for the degree of electrical remodeling and hence be used to determine the stage of atrial fibrillation (AF). OBJECTIVES: In this study, the authors investigated whether local directional heterogeneity (LDH) and anisotropy ratio, derived from estimated local conduction velocities (CVs) during AF, are suitable electrical parameters to stage AF. METHODS: Epicardial mapping (244-electrode array, interelectrode distance 2.25 mm) of the right atrium was performed during acute atrial fibrillation (AAF) (n = 25, 32 ± 11 years of age) and during long-standing persistent atrial fibrillation (LSPAF) (n = 23, 64 ± 9 years of age). Episodes of 9 ± 4 seconds of AF were analyzed. Local CV vectors were constructed to assess the degree of anisotropy. Directions and magnitudes of individual vectors were compared with surrounding vectors to identify LDH. RESULTS: Compared with the entire AAF group, LSPAF was characterized by slower conduction (71.5 ± 6.8 cm/s vs 67.6 ± 5.6 cm/s; P = 0.037) with a larger dispersion (1.59 ± 0.21 vs 1.95 ± 0.17; P < 0.001) and temporal variability (32.0 ± 4.7 cm/s vs 38.5 ± 3.3 cm/s; P < 0.001). Also, LSPAF was characterized by more LDH (19.6% ± 4.4% vs 26.0% ± 3.4%; P < 0.001) and a higher degree of anisotropy (1.38 ± 0.07 vs 1.51 ± 0.14; P < 0.001). Compared with the most complex type of AAF (type III), LSPAF was still associated with a larger CV dispersion, higher temporal variability of CV, and larger amount of LDH. CONCLUSIONS: Increasing AF complexity was associated with increased spatiotemporal variability of local CV vectors, local conduction heterogeneity, and anisotropy ratio. By using these novel parameters, LSPAF could potentially be discriminated from the most complex type of AAF. These observations may indicate pathological alterations of myocardial tissue underlying progression of AF.

3.
J Cardiovasc Dev Dis ; 11(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38392263

ABSTRACT

During the Renaissance, Leonardo Da Vinci was the first person to successfully detail the anatomy of the aortic root and its adjacent structures. Ever since, novel insights into morphology, function, and their interplay have accumulated, resulting in advanced knowledge on the complex functional characteristics of the aortic valve (AV) and root. This has shifted our vision from the AV as being a static structure towards that of a dynamic interconnected apparatus within the aortic root as a functional unit, exhibiting a complex interplay with adjacent structures via both humoral and mechanical stimuli. This paradigm shift has stimulated surgical treatment strategies of valvular disease that seek to recapitulate healthy AV function, whereby AV disease can no longer be seen as an isolated morphological pathology which needs to be replaced. As prostheses still cannot reproduce the complexity of human nature, treatment of diseased AVs, whether stenotic or insufficient, has tremendously evolved, with a similar shift towards treatments options that are more hemodynamically centered, such as the Ross procedure and valve-conserving surgery. Native AV and root components allow for an efficient Venturi effect over the valve to allow for optimal opening during the cardiac cycle, while also alleviating the left ventricle. Next to that, several receptors are present on native AV leaflets, enabling messenger pathways based on their interaction with blood and other shear-stress-related stimuli. Many of these physiological and hemodynamical processes are under-acknowledged but may hold important clues for innovative treatment strategies, or as potential novel targets for therapeutic agents that halt or reverse the process of valve degeneration. A structured overview of these pathways and their implications for cardiothoracic surgeons and cardiologists is lacking. As such, we provide an overview on embryology, hemodynamics, and messenger pathways of the healthy and diseased AV and its implications for clinical practice, by relating this knowledge to current treatment alternatives and clinical decision making.

4.
J Clin Med ; 13(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398329

ABSTRACT

(1) Background: Structural remodeling plays an important role in the pathophysiology of atrial fibrillation (AF). It is likely that structural remodeling occurs transmurally, giving rise to electrical endo-epicardial asynchrony (EEA). Recent studies have suggested that areas of EEA may be suitable targets for ablation therapy of AF. We hypothesized that the degree of EEA is more pronounced in areas of transmural conduction block (T-CB) than single-sided CB (SS-CB). This study examined the degree to which SS-CB and T-CB enhance EEA and which specific unipolar potential morphology parameters are predictive for SS-CB or T-CB. (2) Methods: Simultaneous endo-epicardial mapping in the human right atrium was performed in 86 patients. Potential morphology parameters included unipolar potential voltages, low-voltage areas, potential complexity (long double and fractionated potentials: LDPs and FPs), and the duration of fractionation. (3) Results: EEA was mostly affected by the presence of T-CB areas. Lower potential voltages and more LDPs and FPs were observed in T-CB areas compared to SS-CB areas. (4) Conclusion: Areas of T-CB could be most accurately predicted by combining epicardial unipolar potential morphology parameters, including voltages, fractionation, and fractionation duration (AUC = 0.91). If transmural areas of CB indeed play a pivotal role in the pathophysiology of AF, they could theoretically be used as target sites for ablation.

5.
Cardiovasc Eng Technol ; 15(2): 232-249, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228811

ABSTRACT

For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.


Subject(s)
Disease Models, Animal , Heart Diseases , Animals , Humans , Heart Diseases/physiopathology , Heart Diseases/therapy , Heart Diseases/pathology , Heart Diseases/metabolism , Translational Research, Biomedical
6.
Heart Rhythm ; 21(6): 819-827, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246568

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) in patients with hypertrophic obstructive cardiomyopathy (HOCM) may be caused by a primary atrial myopathy. Whether HOCM-related atrial myopathy affects mainly electrophysiological properties of the left atrium (LA) or also the right atrium (RA) has never been investigated. OBJECTIVE: The purpose of this study was to characterize atrial conduction and explore differences in the prevalence of conduction disorders, potential fractionation, and low-voltage areas (LVAs) between the RA and LA during sinus rhythm (SR) as indicators of potential arrhythmogenic areas. METHODS: Intraoperative epicardial mapping of both atria during SR was performed in 15 HOCM patients (age 50 ± 12 years). Conduction delay (CD) and conductin block (CB), unipolar potential characteristics (voltages, fractionation), and LVA were quantified. RESULTS: Conduction disorders and LVA were found scattered throughout both atria in all patients and did not differ between the RA and LA (CD: 2.9% [1.9%-3.6%] vs 2.6% [2.1%-6.4%], P = .541; CB: 1.7% [0.9%-3.1%] vs 1.5% [0.5%-2.8%], P = .600; LVA: 4.7% [1.6%-7.7%] vs 2.9% [2.1%-7.1%], P = .793). Compared to the RA, unipolar voltages of single potentials (SPs) and fractionated potentials (FPs) were higher in the LA (SP: P75 7.3 mV vs 10.9 mV; FP: P75 2.0 mV vs 3.7 mV). FP contained low-voltage components in only 18% of all LA sites compared to 36% of all RA sites. CONCLUSION: In patients with HOCM, conduction disorders, LVA, and FP are equally present in both atria, supporting the hypothesis of a primary atrial myopathy. Conceptually, the presence of a biatrial substrate and high-voltage FP may contribute to failure of ablative therapy of atrial tachyarrhythmias in this population.


Subject(s)
Atrial Fibrillation , Cardiomyopathy, Hypertrophic , Heart Atria , Humans , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/complications , Middle Aged , Female , Male , Heart Atria/physiopathology , Atrial Fibrillation/physiopathology , Atrial Fibrillation/surgery , Atrial Fibrillation/diagnosis , Heart Conduction System/physiopathology , Epicardial Mapping/methods , Electrocardiography
7.
Hellenic J Cardiol ; 75: 9-20, 2024.
Article in English | MEDLINE | ID: mdl-37482189

ABSTRACT

OBJECTIVE: Patients with persistent atrial fibrillation (AF) have more electrical endo-epicardial asynchrony (EEA) during sinus rhythm (SR) than patients without AF. Prior mapping studies indicated that particularly unipolar, endo- and/or epicardial electrogram (EGM) morphology may be indicators of EEA. This study aim to develop a novel method for estimating the degree of EEA by using unipolar EGM characteristics recorded from either the endo- and/or epicardium. METHODS: Simultaneous endo-epicardial mapping during sinus rhythm was performed in 86 patients. EGM characteristics, including unipolar voltages, low-voltage areas (LVAs), potential types (single, short/long double and fractionated potentials: SP, SDP, LDP and FP) and fractionation duration (FD) of double potentials (DP) and FP were compared between EEA and non-EEA areas. Asynchrony Fingerprinting Scores (AFS) containing quantified EGM characteristics were constructed to estimate the degree of EEA. RESULTS: Endo- and epicardial sites of EEA areas are characterized by lower unipolar voltages, a higher number of LDPs and FPs and longer DP and FP durations. Patients with AF have lower potential voltages in EEA areas, along with alterations in the potential types. The EE-AFS, containing the proportion of endocardial LVAs and FD of epicardial DPs, had the highest predictive value for determining the degree of EEA (AUC: 0.913). Endo- and epi-AFS separately also showed good predictive values (AUC: 0.901 and 0.830 respectively). CONCLUSIONS: EGM characteristics can be used to identify EEA areas. AFS can be utilized as a novel diagnostic tool for accurately estimating the degree of EEA. These characteristics potentially indicate AF related arrhythmogenic substrates.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Humans , Heart Atria , Epicardial Mapping , Pericardium/diagnostic imaging
8.
Biomed Pharmacother ; 170: 116036, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134635

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disorder of the heart, but effective treatment options remain limited. Mavacamten, a direct myosin modulator, has been presented as novel pharmacological therapy for HCM. The aim of this study was to analyze the biomechanical response of HCM tissue to Mavacamten using living myocardial slices (LMS). LMS (n = 58) from patients with HCM (n = 10) were cultured under electromechanical stimulation, and Verapamil and Mavacamten were administered on consecutive days to evaluate their effects on cardiac biomechanics. Mavacamten and Verapamil reduced contractile force and dF/dt and increased time-to-relaxation in a similar manner. Yet, the time-to-peak of the cardiac contraction was prolonged after administration of Mavacamten (221.0 ms (208.8 - 236.3) vs. 237.7 (221.0 - 254.7), p = 0.004). In addition, Mavacamten prolonged the functional refractory period (FRP) (330 ms (304 - 351) vs. 355 ms (313 - 370), p = 0.023) and better preserved twitch force with increasing stimulation frequencies, compared to Verapamil. As such, Mavacamten reduced (hyper-)contractility and prolonged contraction duration of HCM LMS, suggesting a reduction in cardiac wall stress. Also, Mavacamten might protect against the development of ventricular tachyarrhythmias due to prolongation of the FRP, and improve toleration of tachycardia due to better preservation of twitch force at tachycardiac stimulation frequencies.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Myosins , Verapamil/pharmacology , Verapamil/therapeutic use , Myocardial Contraction
9.
Europace ; 25(11)2023 11 02.
Article in English | MEDLINE | ID: mdl-37931071

ABSTRACT

AIMS: Areas of conduction inhomogeneity (CI) during sinus rhythm may facilitate the initiation and perpetuation of atrial fibrillation (AF). Currently, no tool is available to quantify the severity of CI. Our aim is to develop and validate a novel tool using unipolar electrograms (EGMs) only to quantify the severity of CI in the atria. METHODS AND RESULTS: Epicardial mapping of the right atrium (RA) and left atrium, including Bachmann's bundle, was performed in 235 patients undergoing coronary artery bypass grafting surgery. Conduction inhomogeneity was defined as the amount of conduction block. Electrograms were classified as single, short, long double (LDP), and fractionated potentials (FPs), and the fractionation duration of non-single potentials was measured. The proportion of low-voltage areas (LVAs, <1 mV) was calculated. Increased CI was associated with decreased potential voltages and increased LVAs, LDPs, and FPs. The Electrical Fingerprint Score consisting of RA EGM features, including LVAs and LDPs, was most accurate in predicting CI severity. The RA Electrical Fingerprint Score demonstrated the highest correlation with the amount of CI in both atria (r = 0.70, P < 0.001). CONCLUSION: The Electrical Fingerprint Score is a novel tool to quantify the severity of CI using only unipolar EGM characteristics recorded. This tool can be used to stage the degree of conduction abnormalities without constructing spatial activation patterns, potentially enabling early identification of patients at high risk of post-operative AF or selection of the appropriate ablation approach in addition to pulmonary vein isolation at the electrophysiology laboratory.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Heart Rate , Heart Atria/surgery , Epicardial Mapping , Atrioventricular Node
10.
Eur J Cardiothorac Surg ; 64(3)2023 09 07.
Article in English | MEDLINE | ID: mdl-37584683

ABSTRACT

OBJECTIVES: To support clinical decision-making in children with aortic valve disease, by compiling the available evidence on outcome after paediatric aortic valve repair (AVr). METHODS: A systematic review of literature reporting clinical outcome after paediatric AVr (mean age at surgery <18 years) published between 1 January 1990 and 23 December 2021 was conducted. Early event risks, late event rates and time-to-event data were pooled. A microsimulation model was employed to simulate the lives of individual children, infants and neonates following AVr. RESULTS: Forty-one publications were included, encompassing 2 623 patients with 17 217 patient-years of follow-up (median follow-up: 7.3 years; range: 1.0-14.4 years). Pooled mean age during repair for aortic stenosis in children (<18 years), infants (<1 year) or neonates (<30 days) was 5.2 ± 3.9 years, 35 ± 137 days and 11 ± 6 days, respectively. Pooled early mortality after stenosis repair in children, infants and neonates, respectively, was 3.5% (95% confidence interval: 1.9-6.5%), 7.4% (4.2-13.0%) and 10.7% (6.8-16.9%). Pooled late reintervention rate after stenosis repair in children, infants and neonates, respectively, was 3.31%/year (1.66-6.63%/year), 6.84%/year (3.95-11.83%/year) and 6.32%/year (3.04-13.15%/year); endocarditis 0.07%/year (0.03-0.21%/year), 0.23%/year (0.07-0.71%/year) and 0.49%/year (0.18-1.29%/year); and valve thrombosis 0.05%/year (0.01-0.26%/year), 0.15%/year (0.04-0.53%/year) and 0.19%/year (0.05-0.77%/year). Microsimulation-based mean life expectancy in the first 20 years for children, infants and neonates with aortic stenosis, respectively, was 18.4 years (95% credible interval: 18.1-18.7 years; relative survival compared to the matched general population: 92.2%), 16.8 years (16.5-17.0 years; relative survival: 84.2%) and 15.9 years (14.8-17.0 years; relative survival: 80.1%). Microsimulation-based 20-year risk of reintervention in children, infants and neonates, respectively, was 75.2% (72.9-77.2%), 53.8% (51.9-55.7%) and 50.8% (47.0-57.6%). CONCLUSIONS: Long-term outcomes after paediatric AVr for stenosis are satisfactory and dependent on age at surgery. Despite a high hazard of reintervention for valve dysfunction and slightly impaired survival relative to the general population, AVr is associated with low valve-related event occurrences and should be considered in children with aortic valve disease.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Infant, Newborn , Humans , Child , Infant , Adolescent , Aortic Valve/surgery , Constriction, Pathologic , Treatment Outcome , Retrospective Studies , Reoperation
11.
JACC Clin Electrophysiol ; 9(9): 1843-1853, 2023 09.
Article in English | MEDLINE | ID: mdl-37480858

ABSTRACT

BACKGROUND: Low-level vagus nerve stimulation through the tragus (tLLVNS) is increasingly acknowledged as a therapeutic strategy to prevent and treat atrial fibrillation. However, a lack in understanding of the exact antiarrhythmic properties of tLLVNS has hampered clinical implementation. OBJECTIVES: In this study, the authors aimed to study the effects of tLLVNS on atrial electrophysiology by performing intraoperative epicardial mapping during acute and chronic tLLVNS. METHODS: Epicardial mapping of the superior right atrium was performed before and after arterial graft harvesting in patients undergoing coronary artery bypass grafting without a history of atrial fibrillation. The time needed for arterial graft harvesting was used to perform chronic tLLVNS. Electrophysiological properties were compared before and during chronic tLLVNS. RESULTS: A total of 10 patients (median age 74 years [IQR: 69-78 years]) underwent tLLVNS for a duration of 56 minutes (IQR: 43-73 minutes). During acute and chronic tLLVNS, a shift of the sinoatrial node exit site toward a more cranial direction was observed in 5 (50%) patients. Unipolar potential voltage increased significantly during acute and chronic tLLVNS (3.9 mV [IQR: 3.1-4.8 mV] vs 4.7 mV [IQR: 4.0-5.3 mV] vs 5.2 mV [IQR: 4.8-7.0 mV]; P = 0.027, P = 0.02, respectively). Total activation time, slope of unipolar potentials, amount of fractionation, low-voltage areas and conduction velocity did not differ significantly between baseline measurements and tLLVNS. Two patients showed consistent "improvement" of all electrophysiological properties during tLLVNS, while 1 patient appeared to have no beneficial effect. CONCLUSIONS: We demonstrated that tLLVNS resulted in a significant increase in unipolar potential voltage. In addition, we observed the following in selective patients: 1) reduction in total activation time; 2) steeper slope of unipolar potentials; 3) decrease in the amount of fractionation; and 4) change in sinoatrial node exit sites.


Subject(s)
Atrial Fibrillation , Vagus Nerve Stimulation , Humans , Aged , Atrial Fibrillation/therapy , Heart Atria , Coronary Artery Bypass , Cardiac Electrophysiology
12.
Europace ; 25(9)2023 08 02.
Article in English | MEDLINE | ID: mdl-37477953

ABSTRACT

BACKGROUND AND AIMS: Atrial extrasystoles (AES) provoke conduction disorders and may trigger episodes of atrial fibrillation (AF). However, the direction- and rate-dependency of electrophysiological tissue properties on epicardial unipolar electrogram (EGM) morphology is unknown. Therefore, this study examined the impact of spontaneous AES on potential amplitude, -fractionation, -duration, and low-voltage areas (LVAs), and correlated these differences with various degrees of prematurity and aberrancy. METHODS AND RESULTS: Intra-operative high-resolution epicardial mapping of the right and left atrium, Bachmann's Bundle, and pulmonary vein area was performed during sinus rhythm (SR) in 287 patients (60 with AF). AES were categorized according to their prematurity index (>25% shortening) and degree of aberrancy (none, mild/opposite, moderate and severe). In total, 837 unique AES (457 premature; 58 mild/opposite, 355 moderate, and 154 severe aberrant) were included. The average prematurity index was 28% [12-45]. Comparing SR and AES, average voltage decreased (-1.1 [-1.2, -0.9] mV, P < 0.001) at all atrial regions, whereas the amount of LVAs and fractionation increased (respectively, +3.4 [2.7, 4.1] % and +3.2 [2.6, 3.7] %, P < 0.001). Only weak or moderate correlations were found between EGM morphology parameters and prematurity indices (R2 < 0.299, P < 0.001). All parameters were, however, most severely affected by either mild/opposite or severely aberrant AES, in which the effect was more pronounced in AF patients. Also, there were considerable regional differences in effects provoked by AES. CONCLUSION: Unipolar EGM characteristics during spontaneous AES are mainly directional-dependent and not rate-dependent. AF patients have more direction-dependent conduction disorders, indicating enhanced non-uniform anisotropy that is uncovered by spontaneous AES.


Subject(s)
Atrial Fibrillation , Atrial Premature Complexes , Epicardial Mapping , Humans , Electrophysiologic Techniques, Cardiac , Heart Atria/diagnostic imaging
13.
JACC Clin Electrophysiol ; 9(7 Pt 2): 1082-1096, 2023 07.
Article in English | MEDLINE | ID: mdl-37495319

ABSTRACT

BACKGROUND: Dominant frequencies (DFs) or complex fractionated atrial electrograms (CFAEs), indicative of focal sources or rotational activation, are used to identify target sites for atrial fibrillation (AF) ablation in clinical studies, although the relationship among DF, CFAE, and activation patterns remains unclear. OBJECTIVES: This study sought to investigate the relationship between patterns of activation underlying DF and CFAE sites during AF. METHODS: Epicardial high-resolution mapping of the right and left atrium including Bachmann's bundle was performed in 71 participants. We identified the highest dominant frequency (DFmax) and highest degree of CFAE (CFAEmax) with the use of existing clinical criteria and classified patterns of activation as focal or rotational activation and smooth propagation, conduction block (CB), collision and remnant activity, and fibrillation potentials as single, double, or fractionated potentials containing, respectively, 1, 2, or 3 or more negative deflections. Relationships among activation patterns, DFmax, and potential types were investigated. RESULTS: DFmax were primarily located at the left atrioventricular groove and did not harbor focal activation (proportion focal waves: 0% [IQR: 0%-2%]). Compared with non-DFmax sites, DFmax were characterized by more frequent smooth propagation (22% [IQR: 7%-48%] vs 17% [IQR: 11%-24%]; P = 0.001), less frequent conduction block (69% [IQR: 51%-81%] vs 74% [IQR: 69%-78%]; P = 0.006), a higher proportion of single potentials (72% [IQR: 55%-84%] vs 6%1 [IQR: 55%-65%]; P = 0.003), and a lower proportion of fractionated potentials (4% [IQR: 1%-11%] vs 12% [IQR: 9%-15%]; P = 0.004). CFAEmax were mainly found at the pulmonary veins area, and only 1% [IQR: 0%-2%] of all CFAEmax contained focal activation. Compared with non-CFAEmax sites, CFAEmax sites were characterized by less frequent smooth propagation (1% [IQR: 0%-1%] vs 17% [IQR: 12%-24%]; P < 0.001) and more frequent remnant activity (20% [IQR: 12%-29%] vs 8% [IQR: 5%-10%]; P < 0.001), and harbored predominantly fractionated potentials (52% [IQR: 43%-66%] vs 12% [IQR: 9%-14%]; P < 0.001). CONCLUSIONS: Focal or rotational patterns of activation were not consistently detected at DFmax domains and CFAEmax sites. These findings do not support the concept of targeting DFmax or CFAEmax according to existing criteria for AF ablation.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/surgery , Heart Atria , Electrophysiologic Techniques, Cardiac , Epicardial Mapping , Atrioventricular Node , Heart Block
14.
JACC Clin Electrophysiol ; 9(7 Pt 2): 1097-1107, 2023 07.
Article in English | MEDLINE | ID: mdl-37227342

ABSTRACT

BACKGROUND: Perpetuation of atrial fibrillation (AF) is rooted in derailment of molecular proteostasis pathways that cause electrical conduction disorders that drive AF. Emerging evidence indicates a role for long noncoding RNAs (lncRNAs) in the pathophysiology of cardiac diseases, including AF. OBJECTIVES: In the present study, the authors explored the association between 3 cardiac lncRNAs and the degree of electropathology. METHODS: Patients had paroxysmal AF (ParAF) (n = 59), persistent AF (PerAF) (n = 56), or normal sinus rhythm without a history of AF (SR) (n = 70). The relative expression levels of urothelial carcinoma-associated 1 (UCA1), OXCT1-AS1 (SARRAH), and the mitochondrial lncRNA uc022bqs.q (LIPCAR) were measured by means of quantitative reverse-transcription polymerase chain reaction in the right atrial appendage (RAA) or serum (or both). A selection of the patients was subjected to high-resolution epicardial mapping to evaluate electrophysiologic features during SR. RESULTS: The expression levels of SARRAH and LIPCAR were decreased in RAAs of all AF patients compared with SR. Also, in RAAs, UCA1 levels significantly correlated with the percentage of conduction block and delay, and inversely with conduction velocity, indicating that UCA1 levels in RAA reflect the degree of electrophysiologic disorders. Moreover, in serum samples, SARRAH and UCA1 levels were increased in the total AF group and ParAF patients compared with SR. CONCLUSIONS: LncRNAs SARRAH and LIPCAR are reduced in RAA of AF patients, and UCA1 levels correlate with electrophysiologic conduction abnormalities. Thus, RAA UCA1 levels may aid staging of electropathology severity and act as a patient-tailored bioelectrical fingerprint.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Carcinoma, Transitional Cell , RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Atrial Fibrillation/pathology , Carcinoma, Transitional Cell/complications , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Cardiac Conduction System Disease , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Urinary Bladder Neoplasms/complications , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
15.
Ann Med ; 55(1): 1431-1441, 2023 12.
Article in English | MEDLINE | ID: mdl-37194486

ABSTRACT

BACKGROUND: It is unknown which features of unipolar atrial electrogram (U-AEGM) morphology are affected by ageing and whether age-related changes in U-AEGM morphology are equally distributed throughout the right and left atria. PATIENTS AND METHODS: Epicardial high-resolution mapping was performed in patients undergoing coronary artery bypass grafting surgery during sinus rhythm (SR). Mapping areas include the right atrium (RA), left atrium (LA), pulmonary vein area (PVA) and Bachmann's bundle (BB). Patients were categorized into a young (age < 60) and aged (age ≥ 60) group. U-AEGM were classified as single potentials (SPs, one deflection), short double potentials (SDPs, deflection interval ≤ 15ms), long double potentials (LDPs, deflection interval > 15ms) and fractionated potentials (FPs, ≥3 deflections). RESULTS: A total of 213 patients (age: 67 (59-73) years; young group N = 58, aged group N = 155) were included. Only at BB, the proportion of SPs (p = 0.007) was significantly higher in the young group, while the proportion of SDPs (p = 0.051), LDPs (p = 0.004) and FPs (p = 0.006) was higher in the aged group. After adjusting for potential confounders, older age was associated with a reduction in SPs [regression coefficient (ß): -6.33, 95% confident interval (CI): -10.37 to -2.30] at the expense of an increased proportion of SDPs (ß: 2.49, 95% CI: 0.09 to 4.89), LDPs (ß: 1.94, 95% CI: 0.21 to 3.68) and FPs (ß: 1.90, 95% CI: 0.62 to 3.18). CONCLUSIONS: Age-related remodeling particularly affects BB as indicated by the decreased amount of non-SP at this location in the elderly.Key MessagesAgeing preferentially affects the morphology of unipolar atrial electrograms recorded at Bachmann's bundle.At Bachmann's bundle, the proportion of short double-, long double- and fractionated potentials increase during ageing at the expense of a decrease in the proportion of single potentials, reflecting aggravation of abnormalities in conduction.The increase in abnormal unipolar atrial electrograms at Bachmann's bundle during ageing supports the concept that Bachmann's bundle may play an important role in development of age-related arrhythmias such as atrial fibrillation.


Subject(s)
Atrial Fibrillation , Epicardial Mapping , Aged , Humans , Electrophysiologic Techniques, Cardiac , Heart Atria , Heart Rate
17.
Front Pediatr ; 11: 1098248, 2023.
Article in English | MEDLINE | ID: mdl-37009270

ABSTRACT

Right ventricular dysfunction is a major determinant of outcome in patients with complex congenital heart disease, as in tetralogy of Fallot. In these patients, right ventricular dysfunction emerges after initial pressure overload and hypoxemia, which is followed by chronic volume overload due to pulmonary regurgitation after corrective surgery. Myocardial adaptation and the transition to right ventricular failure remain poorly understood. Combining insights from clinical and experimental physiology and myocardial (tissue) data has identified a disease phenotype with important distinctions from other types of heart failure. This phenotype of the right ventricle in tetralogy of Fallot can be described as a syndrome of dysfunctional characteristics affecting both contraction and filling. These characteristics are the end result of several adaptation pathways of the cardiomyocytes, myocardial vasculature and extracellular matrix. As long as the long-term outcome of surgical correction of tetralogy of Fallot remains suboptimal, other treatment strategies need to be explored. Novel insights in failure of adaptation and the role of cardiomyocyte proliferation might provide targets for treatment of the (dysfunctional) right ventricle under stress.

20.
Sci Rep ; 13(1): 3648, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871094

ABSTRACT

Living myocardial slices (LMS) are beating sections of intact human myocardium that maintain 3D microarchitecture and multicellularity, thereby overcoming most limitations of conventional myocardial cell cultures. We introduce a novel method to produce LMS from human atria and apply pacing modalities to bridge the gap between in-vitro and in-vivo atrial arrhythmia studies. Human atrial biopsies from 15 patients undergoing cardiac surgery were dissected to tissue blocks of ~ 1 cm2 and cut to 300 µm thin LMS with a precision-cutting vibratome. LMS were placed in a biomimetic cultivation chamber, filled with standard cell culture medium, under diastolic preload (1 mN) and continuous electrical stimulation (1000 ms cycle length (CL)), resulting in 68 beating LMS. Atrial LMS refractory period was determined at 192 ± 26 ms. Fixed rate pacing with a CL of 333 ms was applied as atrial tachyarrhythmia (AT) model. This novel state-of-the-art platform for AT research can be used to investigate arrhythmia mechanisms and test novel therapies.


Subject(s)
Atrial Fibrillation , Humans , Biomimetics , Research Design , Myocardium , Myocytes, Cardiac
SELECTION OF CITATIONS
SEARCH DETAIL
...