Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anesthesiology ; 84(5): 1138-47, 1996 May.
Article in English | MEDLINE | ID: mdl-8624008

ABSTRACT

BACKGROUND: Reports of the effects of halothane on isoform contractile proteins of striated muscles are conflicting. To determine whether halothane affects cardiac and skeletal contractile proteins differently, the authors examined the effects of two doses of halothane (0.44 and 1.26 mM, equivalent to 0.75 and 2.25 vol%, respectively) on the Ca++ sensitivity and maximal force in human skinned cardiac, type I (slow twitch), and type II (fast twitch) skeletal muscle fibers. METHODS: Left ventricular muscle strips and skeletal muscle biopsy specimens were obtained from eight and ten patients undergoing cardiac and orthopedic surgery, respectively. Sarcolemma and sarcoplasmic reticulum were destroyed with ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid plus Brij 58. Ca++ sensitivity was studied by observing the isometric tension developed by skinned fibers challenged with increasing concentrations of Ca++. Muscle fiber type was determined in each skeletal fiber by the difference in strontium-induced tension measurements. RESULTS: Halothane shifted the Ca++ tension curves toward higher Ca++ concentrations and increased the Ca++ concentrations for half-maximal activation in both cardiac and type I skeletal muscle fibers (from 1.96 microM and 1.06 microM under control conditions to 2.92 microM and 1.71 microM in presence of 0.75 vol% halothane, respectively) without changing the slope of this relationship (Hill coefficient). In contrast, no significant effect was observed in type II fibers. Halothane also decreased the maximal activated tension in the three groups of fibers with a lesser effect in type II fibers. CONCLUSIONS: Halothane decreases Ca++ sensitivity and maximal force in human skinned cardiac and type I fibers at 20 degrees C. It is concluded that the negative inotropic effects of halothane depend on contractile proteins isoforms.


Subject(s)
Anesthetics, Inhalation/pharmacology , Halothane/pharmacology , Muscle Fibers, Skeletal/drug effects , Calcium/pharmacology , Humans , In Vitro Techniques , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/physiology
2.
J Appl Physiol (1985) ; 80(5): 1547-53, 1996 May.
Article in English | MEDLINE | ID: mdl-8727538

ABSTRACT

To determine whether a difference in fiber-type caffeine and Ca2+ sensitivities exists between human masseter and vastus lateralis skeletal muscle, we compared the fiber-type caffeine sensitivities in chemically skinned muscle fibers from 13 masseter and 18 vastus lateralis muscles. Caffeine sensitivity was defined as the threshold concentration inducing > 10% of the maximal tension obtained after the fiber was loaded with a 1.6 x 10(-2) mM Ca2+ solution for 30 s. Significant difference in the mean caffeine sensitivity was found between type I masseter fibers [2.57 +/- 1.32 (SD) mM] vs. type I (6.02 +/- 1.74 mM) and type II vastus lateralis fibers (11.25 +/- 3.13 mM). Maximal Ca(2+)-activated force per cross-sectional area was significantly different between masseter and vastus lateralis fibers. However, the Ca2+ concentration corresponding to half-maximal tension (pCa50) was not significantly different between type I masseter (pCa50 5.9 +/- 0.02) and type I vastus lateralis muscle (pCa50 6.01 +/- 0.08). These results suggest that the increase in caffeine sensitivity of masseter muscle reflects the presence of a low reactivity threshold of the sarcoplasmic reticulum.


Subject(s)
Caffeine/pharmacology , Masseter Muscle/physiology , Muscle Fibers, Skeletal/drug effects , Calcium/pharmacology , Humans , In Vitro Techniques , Masseter Muscle/drug effects , Muscle Contraction/drug effects , Sensitivity and Specificity
3.
Anesthesiology ; 80(3): 625-33, 1994 Mar.
Article in English | MEDLINE | ID: mdl-8141458

ABSTRACT

BACKGROUND: Reports of the direct effects of volatile anesthetics on cardiac myofibrils, studied in various mammalian species but not in humans, have conflicted. To determine whether volatile anesthetics directly affect cardiac contractile proteins in humans, we examined the effects of various equianesthetic doses of halothane (0.46, 0.83, and 1.23 mM, equivalent to 0.75, 1.50, and 2.25%, respectively) and isoflurane (0.63, 1.22, and 1.93 mM, equivalent to 1.15, 2.30, and 3.50%, respectively) on the Ca2+ sensitivity and maximal force in human skinned cardiac fibers. METHODS: Left ventricular muscle strips were obtained from seven patients undergoing cardiac surgery. Sarcolemma was disrupted with EGTA (ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid), and sarcoplasmic reticulum was destroyed with EGTA plus BRIJ 58 detergent. Ca2+ sensitivity was studied by observing the isometric tension developed by skinned fiber bundles challenged with solutions of increasing Ca2+ concentrations expressed in pCa (where pCa = -log10[Ca2+]). Maximal force was measured with a pCa 4.8 solution. RESULTS: Both anesthetics shifted the pCa-tension curves toward higher Ca2+ concentrations and decreased pCa for half-maximal activation in a dose-dependent and reversible fashion (from 5.71 for control to 5.56 and 5.55 for 1 MAC halothane and isoflurane, respectively) without changing the slope of this relationship (Hill coefficient). No differences between agents were observed at equianesthetic concentrations. The two agents also decreased the maximal activated tension in a dose-dependent fashion (-27 and -28% vs. control for 2 MAC halothane and isoflurane, respectively). CONCLUSIONS: The current study indicates that halothane and isoflurane decrease Ca2+ sensitivity and maximal force in human skinned cardiac fibers at 20 degrees C. If these effects extend to higher temperatures, they may contribute to the negative inotropic effect of these agents.


Subject(s)
Calcium/pharmacology , Halothane/pharmacology , Heart/drug effects , Heart/physiology , Isoflurane/pharmacology , Muscle Proteins/drug effects , Muscle Proteins/physiology , Myocardial Contraction/drug effects , Aged , Calcium/physiology , Cetomacrogol/pharmacology , Depression, Chemical , Egtazic Acid/pharmacology , Female , Humans , In Vitro Techniques , Kinetics , Male , Middle Aged , Myocardium/chemistry , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...