Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Virology ; 597: 110143, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38917692

ABSTRACT

Merkel Cell Carcinoma (MCC) is a rare neuroendocrine skin cancer. In our previous work, we decoded genes specifically deregulated by MCPyV early genes as opposed to other polyomaviruses and established functional importance of NDRG1 in inhibiting cellular proliferation and migration in MCC. In the present work, we found the SET protein, (I2PP2A, intrinsic inhibitor of PP2A) upstream of NDRG1 which was modulated by MCPyV early genes, both in hTERT-HK-MCPyV and MCPyV-positive (+) MCC cell lines. Additionally, MCC dermal tumour nodule tissues showed strong SET expression. Inhibition of the SET-PP2A interaction in hTERT-HK-MCPyV using the small molecule inhibitor, FTY720, increased NDRG1 expression and inhibited cell cycle regulators, cyclinD1 and CDK2. SET inhibition by shRNA and FTY720 also decreased cell proliferation and colony formation in MCPyV(+) MCC cells. Overall, these results pave a path for use of drugs targeting SET protein for the treatment of MCC.

2.
J Virol ; 97(10): e0072223, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37754761

ABSTRACT

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Subject(s)
Antiviral Agents , Capsid , Hepatitis B virus , Hepatitis B, Chronic , Virus Assembly , Animals , Humans , Mice , Antiviral Agents/classification , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Capsid/chemistry , Capsid/drug effects , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/drug effects , Capsid Proteins/metabolism , Cells, Cultured , Hepatitis B virus/chemistry , Hepatitis B virus/drug effects , Hepatitis B virus/growth & development , Hepatitis B virus/metabolism , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , In Vitro Techniques , Virus Assembly/drug effects , Disease Models, Animal
3.
Hepatology ; 78(4): 1252-1265, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37102495

ABSTRACT

BACKGROUND AND AIMS: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model. Here, we investigate the underlying mechanism of action for CAM-A compound RG7907. APPROACH AND RESULTS: RG7907 induced extensive HBc aggregation in vitro , in hepatoma cells, and in primary hepatocytes. In the adeno-associated virus (AAV)-HBV mouse model, the RG7907 treatment led to a pronounced reduction in serum HBsAg and HBeAg, concomitant with clearance of HBsAg, HBc, and AAV-HBV episome from the liver. Transient increases in alanine transaminase, hepatocyte apoptosis, and proliferation markers were observed. These processes were confirmed by RNA sequencing, which also uncovered a role for interferon alpha and gamma signaling, including the interferon-stimulated gene 15 (ISG15) pathway. Finally, the in vitro observation of CAM-A-induced HBc-dependent cell death through apoptosis established the link of HBc aggregation to in vivo loss of infected hepatocytes. CONCLUSIONS: Our study unravels a previously unknown mechanism of action for CAM-As such as RG7907 in which HBc aggregation induces cell death, resulting in hepatocyte proliferation and loss of covalently closed circular DNA or its equivalent, possibly assisted by an induced innate immune response. This represents a promising approach to attain a functional cure for chronic hepatitis B.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Mice , Animals , Hepatitis B virus , Hepatitis B Surface Antigens/metabolism , Capsid/metabolism , Hepatocytes/metabolism , Interferon-alpha/pharmacology , Hepatitis B/metabolism , DNA, Viral/genetics
4.
mSphere ; 8(2): e0005623, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36883841

ABSTRACT

Tumor suppressor p53 and its related proteins, p63 and p73, can be synthesized as multiple isoforms lacking part of the N- or C-terminal regions. Specifically, high expression of the ΔNp73α isoform is notoriously associated with various human malignancies characterized by poor prognosis. This isoform is also accumulated by oncogenic viruses, such as Epstein-Barr virus (EBV), as well as genus beta human papillomaviruses (HPV) that appear to be involved in carcinogenesis. To gain additional insight into ΔNp73α mechanisms, we have performed proteomics analyses using human keratinocytes transformed by the E6 and E7 proteins of the beta-HPV type 38 virus as an experimental model (38HK). We find that ΔNp73α associates with the E2F4/p130 repressor complex through a direct interaction with E2F4. This interaction is favored by the N-terminal truncation of p73 characteristic of ΔNp73 isoforms. Moreover, it is independent of the C-terminal splicing status, suggesting that it could represent a general feature of ΔNp73 isoforms (α, ß, γ, δ, ε, ζ, θ, η, and η1). We show that the ΔNp73α-E2F4/p130 complex inhibits the expression of specific genes, including genes encoding for negative regulators of proliferation, both in 38HK and in HPV-negative cancer-derived cell lines. Such genes are not inhibited by E2F4/p130 in primary keratinocytes lacking ΔNp73α, indicating that the interaction with ΔNp73α rewires the E2F4 transcriptional program. In conclusion, we have identified and characterized a novel transcriptional regulatory complex with potential implications in oncogenesis. IMPORTANCE The TP53 gene is mutated in about 50% of human cancers. In contrast, the TP63 and TP73 genes are rarely mutated but rather expressed as ΔNp63 and ΔNp73 isoforms in a wide range of malignancies, where they act as p53 antagonists. Accumulation of ΔNp63 and ΔNp73, which is associated with chemoresistance, can result from infection by oncogenic viruses such as EBV or HPV. Our study focuses on the highly carcinogenic ΔNp73α isoform and uses a viral model of cellular transformation. We unveil a physical interaction between ΔNp73α and the E2F4/p130 complex involved in cell cycle control, which rewires the E2F4/p130 transcriptional program. Our work shows that ΔNp73 isoforms can establish interactions with proteins that do not bind to the TAp73α tumor suppressor. This situation is analogous to the gain-of-function interactions of p53 mutants supporting cellular proliferation.


Subject(s)
Epstein-Barr Virus Infections , Papillomavirus Infections , Humans , Cell Transformation, Neoplastic , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , E2F4 Transcription Factor/genetics , E2F4 Transcription Factor/metabolism , Gene Expression , Herpesvirus 4, Human/genetics , Human Papillomavirus Viruses , Keratinocytes , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Crk-Associated Substrate Protein/metabolism , Neoplasms/metabolism
5.
J Virol ; 96(14): e0206121, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35770990

ABSTRACT

Several studies reported the presence of a recently discovered polyomavirus (PyV), Lyon IARC PyV (LIPyV), in human and domestic animal specimens. LIPyV has some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV (MCPyV), respectively. In this study, we demonstrate that LIPyV early proteins immortalize human foreskin keratinocytes. LIPyV LT binds pRb, accordingly cell cycle checkpoints are altered in primary human fibroblasts and keratinocytes expressing LIPyV early genes. Mutation of the pRb binding site in LT strongly affected the ability of LIPyV ER to induced HFK immortalization. LIPyV LT also binds p53 and alters p53 functions activated by cellular stresses. Finally, LIPyV early proteins activate telomerase reverse transcriptase (hTERT) gene expression, via accumulation of the Sp1 transcription factor. Sp1 recruitment to the hTERT promoter is controlled by its phosphorylation, which is mediated by ERK1 and CDK2. Together, these data highlight the transforming properties of LIPyV in in vitro experimental models, supporting its possible oncogenic nature. IMPORTANCE Lyon IARC PyV is a recently discovered polyomavirus that shows some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV, respectively. Here, we show the capability of LIPyV to efficiently promote cellular transformation of primary human cells, suggesting a possible oncogenic role of this virus in domestic animals and/or humans. Our study identified a novel virus-mediated mechanism of activation of telomerase reverse transcriptase gene expression, via accumulation of the Sp1 transcription factor. In addition, because the persistence of infection is a key event in virus-mediated carcinogenesis, it will be important to determine whether LIPyV can deregulate immune-related pathways, similarly to the well-established oncogenic viruses.


Subject(s)
Polyomavirus Infections , Polyomavirus , Animals , Carcinogenesis , Fibroblasts/virology , Humans , Keratinocytes/virology , Merkel cell polyomavirus/genetics , Polyomavirus/genetics , Polyomavirus/metabolism , Polyomavirus Infections/virology , Sp1 Transcription Factor/metabolism , Telomerase/genetics , Tumor Suppressor Protein p53/metabolism
6.
J Clin Med ; 11(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35268440

ABSTRACT

Despite a preventive vaccine being available, more than 250 million people suffer from chronic hepatitis B virus (HBV) infection, a major cause of liver disease and HCC. HBV infects human hepatocytes where it establishes its genome, the cccDNA with chromosomal features. Therapies controlling HBV replication exist; however, they are not sufficient to eradicate HBV cccDNA, the main cause for HBV persistence in patients. Core protein is the building block of HBV nucleocapsid. This viral protein modulates almost every step of the HBV life cycle; hence, it represents an attractive target for the development of new antiviral therapies. Capsid assembly modulators (CAM) bind to core dimers and perturb the proper nucleocapsid assembly. The potent antiviral activity of CAM has been demonstrated in cell-based and in vivo models. Moreover, several CAMs have entered clinical development. The aim of this review is to summarize the mechanism of action (MoA) and the advancements in the clinical development of CAMs and in the characterization of their mod of action.

7.
PLoS Pathog ; 16(8): e1008792, 2020 08.
Article in English | MEDLINE | ID: mdl-32813746

ABSTRACT

Tumor suppressors can exert pro-proliferation functions in specific contexts. In the beta human papillomavirus type 38 (HPV38) experimental model, the viral proteins E6 and E7 promote accumulation of a wild-type (WT) p53 form in human keratinocytes (HKs), promoting cellular proliferation. Inactivation of p53 by different means strongly decreases the proliferation of HPV38 E6/E7 HKs. This p53 form is phosphorylated at S392 by the double-stranded RNA-dependent protein kinase PKR, which is highly activated by HPV38. PKR-mediated S392 p53 phosphorylation promotes the formation of a p53/DNMT1 complex, which inhibits expression of integrin alpha 1 (ITGA1), a repressor of epidermal growth factor receptor (EGFR) signaling. Ectopic expression of ITGA1 in HPV38 E6/E7 HKs promotes EGFR degradation, inhibition of cellular proliferation, and cellular death. Itga1 expression was also inhibited in the skin of HPV38 transgenic mice that have an elevated susceptibility to UV-induced skin carcinogenesis. In summary, these findings reveal the existence of a specific WT p53 form that displays pro-proliferation properties.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Cell Proliferation , Keratinocytes/pathology , Membrane Proteins/antagonists & inhibitors , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/complications , Repressor Proteins/metabolism , Skin Neoplasms/etiology , Tumor Suppressor Protein p53/metabolism , Animals , Cells, Cultured , Down-Regulation , Humans , Keratinocytes/immunology , Keratinocytes/virology , Mice , Mice, Transgenic , Oncogene Proteins, Viral/genetics , Papillomaviridae/isolation & purification , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/virology , Repressor Proteins/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
8.
J Virol ; 94(3)2020 01 17.
Article in English | MEDLINE | ID: mdl-31694959

ABSTRACT

Merkel cell polyomavirus (MCPyV) is the first human polyomavirus etiologically associated with Merkel cell carcinoma (MCC), a rare and aggressive form of skin cancer. Similar to other polyomaviruses, MCPyV encodes early T antigen genes, viral oncogenes required for MCC tumor growth. To identify the unique oncogenic properties of MCPyV, we analyzed the gene expression profiles in human spontaneously immortalized keratinocytes (NIKs) expressing the early genes from six distinct human polyomaviruses (PyVs), including MCPyV. A comparison of the gene expression profiles revealed 28 genes specifically deregulated by MCPyV. In particular, the MCPyV early gene downregulated the expression of the tumor suppressor gene N-myc downstream-regulated gene 1 (NDRG1) in MCPyV gene-expressing NIKs and hTERT-MCPyV gene-expressing human keratinocytes (HK) compared to their expression in the controls. In MCPyV-positive MCC cells, the expression of NDRG1 was downregulated by the MCPyV early gene, as T antigen knockdown rescued the level of NDRG1. In addition, NDRG1 overexpression in hTERT-MCPyV gene-expressing HK or MCC cells resulted in a decrease in the number of cells in S phase and cell proliferation inhibition. Moreover, a decrease in wound healing capacity in hTERT-MCPyV gene-expressing HK was observed. Further analysis revealed that NDRG1 exerts its biological effect in Merkel cell lines by regulating the expression of the cyclin-dependent kinase 2 (CDK2) and cyclin D1 proteins. Overall, NDRG1 plays an important role in MCPyV-induced cellular proliferation.IMPORTANCE Merkel cell carcinoma was first described in 1972 as a neuroendocrine tumor of skin, most cases of which were reported in 2008 to be caused by a PyV named Merkel cell polyomavirus (MCPyV), the first PyV linked to human cancer. Thereafter, numerous studies have been conducted to understand the etiology of this virus-induced carcinogenesis. However, it is still a new field, and much work is needed to understand the molecular pathogenesis of MCC. In the current work, we sought to identify the host genes specifically deregulated by MCPyV, as opposed to other PyVs, in order to better understand the relevance of the genes analyzed on the biological impact and progression of the disease. These findings open newer avenues for targeted drug therapies, thereby providing hope for the management of patients suffering from this highly aggressive cancer.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Merkel cell polyomavirus/genetics , Merkel cell polyomavirus/physiology , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Carcinogenesis/genetics , Carcinoma, Merkel Cell/virology , Cell Line , Down-Regulation , Gene Expression Regulation, Neoplastic , Gene Expression Regulation, Viral , Humans , Keratinocytes/virology , Polyomavirus Infections/virology , Skin/pathology , Skin Neoplasms/genetics , Transcriptome , Tumor Virus Infections/virology
9.
Proc Natl Acad Sci U S A ; 114(45): E9493-E9501, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078363

ABSTRACT

The Pat1 protein is a central player of eukaryotic mRNA decay that has also been implicated in translational control. It is commonly considered a central platform responsible for the recruitment of several RNA decay factors. We demonstrate here that a yeast-specific C-terminal region from Pat1 interacts with several short motifs, named helical leucine-rich motifs (HLMs), spread in the long C-terminal region of yeast Dcp2 decapping enzyme. Structures of Pat1-HLM complexes reveal the basis for HLM recognition by Pat1. We also identify a HLM present in yeast Xrn1, the main 5'-3' exonuclease involved in mRNA decay. We show further that the ability of yeast Pat1 to bind HLMs is required for efficient growth and normal mRNA decay. Overall, our analyses indicate that yeast Pat1 uses a single binding surface to successively recruit several mRNA decay factors and show that interaction between those factors is highly polymorphic between species.


Subject(s)
Endoribonucleases/metabolism , Exoribonucleases/metabolism , Fungal Proteins/metabolism , RNA, Messenger/metabolism , Yeasts/metabolism , Protein Binding/physiology , Protein Domains/physiology , RNA Stability/physiology , RNA-Binding Proteins/metabolism
10.
Nat Struct Mol Biol ; 23(11): 982-986, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27694841

ABSTRACT

Elimination of the 5' cap of eukaryotic mRNAs, known as decapping, is considered to be a crucial, irreversible and highly regulated step required for the rapid degradation of mRNA by Xrn1, the major cytoplasmic 5'-3' exonuclease. Decapping is accomplished by the recruitment of a protein complex formed by the Dcp2 catalytic subunit and its Dcp1 cofactor. However, this complex has a low intrinsic enzymatic activity and requires several accessory proteins such as the Lsm1-7 complex, Pat1, Edc1-Edc2 and/or Edc3 to be fully active. Here we present the crystal structure of the active form of the yeast Kluyveromyces lactis Dcp1-Dcp2 enzyme bound to its product (m7GDP) and its potent activator Edc3. This structure of the Dcp1-Dcp2 complex bound to a cap analog further explains previously published data on substrate binding and provides hints as to the mechanism of Edc3-mediated Dcp2 activation.


Subject(s)
Endoribonucleases/metabolism , Fungal Proteins/metabolism , Guanosine Diphosphate/analogs & derivatives , Saccharomycetales/metabolism , Crystallography, X-Ray , Endoribonucleases/chemistry , Enzyme Activation , Fungal Proteins/chemistry , Guanosine Diphosphate/metabolism , Models, Molecular , Protein Binding , Protein Conformation , RNA Stability , Saccharomycetales/chemistry
11.
Nat Struct Mol Biol ; 23(9): 794-802, 2016 09.
Article in English | MEDLINE | ID: mdl-27455459

ABSTRACT

During translation elongation, decoding is based on the recognition of codons by corresponding tRNA anticodon triplets. Molecular mechanisms that regulate global protein synthesis via specific base modifications in tRNA anticodons are receiving increasing attention. The conserved eukaryotic Elongator complex specifically modifies uridines located in the wobble base position of tRNAs. Mutations in Elongator subunits are associated with certain neurodegenerative diseases and cancer. Here we present the crystal structure of D. mccartyi Elp3 (DmcElp3) at 2.15-Å resolution. Our results reveal an unexpected arrangement of Elp3 lysine acetyltransferase (KAT) and radical S-adenosyl methionine (SAM) domains, which share a large interface and form a composite active site and tRNA-binding pocket, with an iron-sulfur cluster located in the dimerization interface of two DmcElp3 molecules. Structure-guided mutagenesis studies of yeast Elp3 confirmed the relevance of our findings for eukaryotic Elp3s and should aid in understanding the cellular functions and pathophysiological roles of Elongator.


Subject(s)
Bacterial Proteins/chemistry , Histone Acetyltransferases/chemistry , RNA, Transfer/chemistry , Catalytic Domain , Chloroflexi/enzymology , Crystallography, X-Ray , Protein Binding , Protein Conformation, alpha-Helical , Protein Multimerization , RNA, Bacterial/chemistry , Substrate Specificity
12.
Nucleic Acids Res ; 44(1): 437-48, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26602689

ABSTRACT

Metazoan SR and SR-like proteins are important regulatory factors in RNA splicing, export, translation and RNA decay. We determined the NMR structures and nucleic acid interaction modes of Gbp2 and Hrb1, two paralogous budding yeast proteins with similarities to mammalian SR proteins. Gbp2 RRM1 and RRM2 recognise preferentially RNAs containing the core motif GGUG. Sequence selectivity resides in a non-canonical interface in RRM2 that is highly related to the SRSF1 pseudoRRM. The atypical Gbp2/Hrb1 C-terminal RRM domains (RRM3) do not interact with RNA/DNA, likely because of their novel N-terminal extensions that block the canonical RNA binding interface. Instead, we discovered that RRM3 is crucial for interaction with the THO/TREX complex and identified key residues essential for this interaction. Moreover, Gbp2 interacts genetically with Tho2 as the double deletion shows a synthetic phenotype and preventing Gbp2 interaction with the THO/TREX complex partly supresses gene expression defect associated with inactivation of the latter complex. These findings provide structural and functional insights into the contribution of SR-like proteins in the post-transcriptional control of gene expression.


Subject(s)
Multiprotein Complexes/metabolism , Protein Interaction Domains and Motifs , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , DNA/metabolism , Models, Molecular , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/metabolism , Poly(A)-Binding Proteins/chemistry , Poly(A)-Binding Proteins/metabolism , Protein Binding , Protein Conformation , Proton Magnetic Resonance Spectroscopy , RNA/metabolism , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Telomere/genetics , Telomere/metabolism
13.
Hum Mol Genet ; 24(11): 3163-71, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25712129

ABSTRACT

mRNA decay is an essential and active process that allows cells to continuously adapt gene expression to internal and environmental cues. There are two mRNA degradation pathways: 3' to 5' and 5' to 3'. The DCPS protein is the scavenger mRNA decapping enzyme which functions in the last step of the 3' end mRNA decay pathway. We have identified a DCPS pathogenic mutation in a large family with three affected individuals presenting with a novel recessive syndrome consisting of craniofacial anomalies, intellectual disability and neuromuscular defects. Using patient's primary cells, we show that this homozygous splice mutation results in a DCPS loss-of-function allele. Diagnostic biochemical analyses using various m7G cap derivatives as substrates reveal no DCPS enzymatic activity in patient's cells. Our results implicate DCPS and more generally RNA catabolism, as a critical cellular process for neurological development, normal cognition and organismal homeostasis in humans.


Subject(s)
Abnormalities, Multiple/genetics , Endoribonucleases/genetics , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Cells, Cultured , Child , Child, Preschool , Consanguinity , DNA Mutational Analysis , Endoribonucleases/deficiency , Genetic Association Studies , Humans , Male , Pedigree , RNA Splice Sites , Syndrome
14.
Nucleic Acids Res ; 43(1): 482-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25432955

ABSTRACT

Eukaryotic 5' mRNA cap structures participate to the post-transcriptional control of gene expression before being released by the two main mRNA decay pathways. In the 3'-5' pathway, the exosome generates free cap dinucleotides (m7GpppN) or capped oligoribonucleotides that are hydrolyzed by the Scavenger Decapping Enzyme (DcpS) forming m7GMP. In the 5'-3' pathway, the decapping enzyme Dcp2 generates m7GDP. We investigated the fate of m7GDP and m7GpppN produced by RNA decay in extracts and cells. This defined a pathway involving DcpS, NTPs and the nucleoside diphosphate kinase for m7GDP elimination. Interestingly, we identified and characterized in vitro and in vivo a new scavenger decapping enzyme involved in m7GpppN degradation. We show that activities mediating cap elimination identified in yeast are essentially conserved in human. Their alteration may contribute to pathologies, possibly through the interference of cap (di)nucleotide with cellular function.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Endoribonucleases/metabolism , Neoplasm Proteins/metabolism , RNA Caps/metabolism , RNA Stability , RNA, Messenger/metabolism , Adenosine Triphosphate/metabolism , Dinucleoside Phosphates/metabolism , Guanosine Diphosphate/analogs & derivatives , Guanosine Diphosphate/metabolism , HEK293 Cells , Humans , N-Glycosyl Hydrolases/metabolism , Nucleoside-Diphosphate Kinase/metabolism , RNA Cap Analogs/metabolism , Saccharomyces cerevisiae Proteins/metabolism
15.
PLoS One ; 9(5): e96828, 2014.
Article in English | MEDLINE | ID: mdl-24830408

ABSTRACT

Eukaryotic mRNA decay is a highly regulated process allowing cells to rapidly modulate protein production in response to internal and environmental cues. Mature translatable eukaryotic mRNAs are protected from fast and uncontrolled degradation in the cytoplasm by two cis-acting stability determinants: a methylguanosine (m(7)G) cap and a poly(A) tail at their 5' and 3' extremities, respectively. The hydrolysis of the m(7)G cap structure, known as decapping, is performed by the complex composed of the Dcp2 catalytic subunit and its partner Dcp1. The Dcp1-Dcp2 decapping complex has a low intrinsic activity and requires accessory factors to be fully active. Among these factors, Pat1 is considered to be a central scaffolding protein involved in Dcp2 activation but also in inhibition of translation initiation. Here, we present the structural and functional study of the C-terminal domain from S. cerevisiae Pat1 protein. We have identified two conserved and functionally important regions located at both extremities of the domain. The first region is involved in binding to Lsm1-7 complex. The second patch is specific for fungal proteins and is responsible for Pat1 interaction with Edc3. These observations support the plasticity of the protein interaction network involved in mRNA decay and show that evolution has extended the C-terminal alpha-helical domain from fungal Pat1 proteins to generate a new binding platform for protein partners.


Subject(s)
RNA-Binding Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Cloning, Molecular , Genetic Complementation Test , Hydrolysis , Molecular Conformation , Molecular Sequence Data , Plasmids/metabolism , Protein Binding , Protein Biosynthesis , Protein Multimerization , Protein Structure, Tertiary , RNA Stability/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Temperature , Two-Hybrid System Techniques
16.
Mol Microbiol ; 82(5): 1260-76, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22014150

ABSTRACT

The presence of very different sets of enzymes, and in particular the presence of RNase E and RNase J, has been used to explain significant differences in RNA metabolism between the two model organisms Escherichia coli and Bacillus subtilis. However, these studies might have somewhat polarized our view of RNA metabolism. Here, we identified a RNase J in Mycobacterium smegmatis that has both 5'-3' exo- and endonucleolytic activity. This enzyme coexists with RNase E in this organism, a configuration that enabled us to study how these two key nucleases collaborate. We demonstrate that RNase E is responsible for the processing of the furA-katG transcript in M. smegmatis and that both RNase E and RNase J are involved in the 5' end processing of all ribosomal RNAs. In contrast to B. subtilis, the activity of RNase J, although required in vivo for 23S rRNA maturation, is not essential in M. smegmatis. We show that the pathways for ribosomal RNA maturation in M. smegmatis are quite different from those observed in E. coli and in B. subtilis. Studying organisms containing different combinations of key ribonucleases can thus significantly broaden our view of the possible strategies that exist to direct RNA metabolism.


Subject(s)
Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism , RNA Processing, Post-Transcriptional , RNA, Bacterial/metabolism , RNA, Ribosomal/metabolism , Ribonucleases/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Models, Biological , Models, Chemical , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...