Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38276018

ABSTRACT

A three-year survey was conducted to estimate the incidence of grapevine trunk diseases (GTDs) in Greece and identify fungi associated with the disease complex. In total, 310 vineyards in different geographical regions in northern, central, and southern Greece were surveyed, and 533 fungal strains were isolated from diseased vines. Morphological, physiological and molecular (5.8S rRNA gene-ITS sequencing) analyses revealed that isolates belonged to 35 distinct fungal genera, including well-known (e.g., Botryosphaeria sp., Diaporthe spp., Eutypa sp., Diplodia sp., Fomitiporia sp., Phaeoacremonium spp., Phaeomoniella sp.) and lesser-known (e.g., Neosetophoma sp., Seimatosporium sp., Didymosphaeria sp., Kalmusia sp.) grapevine wood inhabitants. The GTDs-inducing population structure differed significantly among the discrete geographical zones. Phaeomoniella chlamydospora (26.62%, n = 70), Diaporthe spp. (18.25%, n = 48) and F. mediterranea (10.27%, n = 27) were the most prevalent in Heraklion, whereas D. seriata, Alternaria spp., P. chlamydospora and Fusarium spp. were predominant in Nemea (central Greece). In Amyntaio and Kavala (northern Greece), D. seriata was the most frequently isolated species (>50% frequency). Multi-genes (rDNA-ITS, LSU, tef1-α, tub2, act) sequencing of selected isolates, followed by pathogenicity tests, revealed that Neosetophoma italica, Seimatosporium vitis, Didymosphaeria variabile and Kalmusia variispora caused wood infection, with the former being the most virulent. To the best of our knowledge, this is the first report of N. italica associated with GTDs worldwide. This is also the first record of K. variispora, S. vitis and D. variabile associated with wood infection of grapevine in Greece. The potential associations of disease indices with vine age, cultivar, GTD-associated population structure and the prevailing meteorological conditions in different viticultural zones in Greece are presented and discussed.

3.
Environ Microbiome ; 16(1): 23, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34863281

ABSTRACT

BACKGROUND: Grapevine trunk diseases (GTDs) is a disease complex caused by wood pathogenic fungi belonging to genera like Phaeomoniella, Phaeoacremonium, Fomitiporia, Eutypa and members of the family Botryosphaeriaceae. However, the co-occurrence of these fungi in symptomatic and asymptomatic vines at equivalent abundances has questioned their role in GTDs. Hence, we still lack a good understanding of the fungi involved in GTDs, their interactions and the factors controlling their assemblage in vines. We determined the fungal and bacterial microbiome in wood tissues of asymptomatic and symptomatic vines of three main Greek cultivars (Agiorgitiko, Xinomavro, Vidiano), each cultivated in geographically distinct viticultural zones, using amplicon sequencing. RESULTS: We noted that cultivar/biogeography (lumped factor) was the strongest determinant of the wood fungal microbiome (p < 0.001, 22.7%), while GTD symptoms condition had a weaker but still significant effect (p < 0.001, 3.5%), being prominent only in the cultivar Xinomavro. Several fungal Amplicon Sequence Variants (ASVs), reported as GTD-associated pathogens like Kalmusia variispora, Fomitiporia spp., and Phaemoniella chlamydosporα (most dominant in our study), were positively correlated with symptomatic vines in a cultivar/viticultural zone dependent manner. Random Forest analysis pointed to P. chlamydosporα, K. variispora, A. alternata and Cladosporium sp., as highly accurate predictors of symptomatic vines (0% error rate). The wood bacterial microbiome showed similar patterns, with biogeography/cultivar being the main determinant (p < 0.001, 25.5%) of its composition, followed by the GTD status of vines (p < 0.001, 5.2%). Differential abundance analysis revealed a universal positive correlation (p < 0.001) of Bacillus and Streptomyces ASVs with asymptomatic vines. Network analysis identified a significant negative co-occurrence network between these bacterial genera and Phaemoniella, Phaeoacrominum and Seimatosporium. These results point to a plant beneficial interaction between Bacillus/Streptomyces and GTD pathogens. CONCLUSIONS: Our study (a) provides evidence that GTD symptomatic plants support a wood fungal microbiome, showing cultivar and biogeography-dependent patterns, that could be used as a proxy to distinguish between healthy and diseased vines, (b) points to strong interactions between the bacterial and fungal wood microbiome in asymptomatic vines that should be further pursued in the quest for discovery of novel biocontrol agents.

4.
Plant Dis ; 105(11): 3623-3635, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34003032

ABSTRACT

In November 2019, a severe outbreak of fruit rot was observed in olive orchards in Crete, southern Greece. Symptoms appeared primarily on fruits and stalks, resembling those caused by anthracnose. Typical symptoms were fruit rot, shrinkage, and mummification, associated commonly with stalk discoloration and fruit drop. Disease incidence was estimated at up to 100% in some cases, and an unprecedented increase in olive oil acidity reaching up to 8% (percentage of oleic acid) in severely affected olive groves was recorded. Thirty-two olive groves were then surveyed, and samples of fruit, stalk, leaf, and shoot were collected. Visual, stereoscopic, and microscopic observations revealed several fungi belonging to the genera Alternaria, Botryosphaeria, Capnodium, Colletotrichum, Fusarium, and Pseudocercospora. Fungal infection in fruits was commonly associated with concomitant infestation by the olive fruit fly Bactrocera oleae along with increased air temperature and relative humidity conditions that prevailed in October and November 2019. Twenty representative fungal strains isolated from symptomatic fruits and stalks were characterized by morphological, physiological, and molecular analyses. By internal transcribed spacer regions of ribosomal DNA region and translation elongation factor 1-α gene sequencing analysis, these isolates were identified as Alternaria spp., A. infectoria, Botryosphaeria dothidea, Colletotrichum boninense sensu lato, Fusarium lateritium, F. solani species complex and Stemphylium amaranthi. Pathogenicity tests on punctured fruits revealed that all isolates were pathogenic; however, F. solani isolates along with B. dothidea were the most virulent, and wounds were necessary for efficient fungal infection. Moreover, as few as 10 spores of F. solani were sufficient to cause significant infection in punctured fruits. F. solani was also capable of infecting olive fruits in the presence of B. oleae, with no additional wounding, in artificial inoculation experiments. Moreover, it was capable of colonizing and affecting olive blossoms. Further analyses of olive oil extracted from fruits artificially inoculated with F. solani indicated a significant increase in oil acidity, K232, K270, and peroxide value, whereas total phenol content was significantly decreased. To the best of our knowledge, this is the first report of F. solani associated with olive fruit rot and olive oil degradation worldwide.


Subject(s)
Colletotrichum , Olea , Colletotrichum/genetics , Greece , Olive Oil , Plant Diseases
5.
Sci Rep ; 8(1): 3996, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29507335

ABSTRACT

Phytophagy is a common feature among pure herbivorous insects and omnivores that utilise both plant and prey as food resources; nevertheless, experimental evidence for factors affecting their interactions is restricted to intraguild predation and predator-mediated competition. We herein focused on plant-mediated effects that could result from plant defence activation or quality alteration and compared the performance of an omnivore, the western flower thrips Frankliniella occidentalis, and a pure herbivore, the greenhouse whitefly Trialeurodes vaporariorum, on cucumber plants previously infested with either species. Furthermore, we recorded their behavioural responses when given a choice among infested and clean plants. Whiteflies laid less eggs on plants previously exposed to thrips but more on whitefly-infested plants. Thrips survival was negatively affected on whitefly-infested than on thrips-infested or clean plants. Notably, whiteflies developed significantly faster on plants infested with conspecifics. In accordance, whiteflies avoided thrips-infested plants and preferred whitefly-infested over clean plants. Thrips showed no preference for either infested or clean plants. Our study is a first report on the role of plant-mediated effects in shaping omnivore-herbivore interactions. Considering the factors driving such interactions we will likely better understand the ecology of the more complex relationships among plants and pest organisms.


Subject(s)
Hemiptera/physiology , Herbivory , Predatory Behavior/physiology , Thysanoptera/physiology , Animals , Cucumis sativus/parasitology , Female , Solanum lycopersicum/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...