Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 173: 336-350, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37989435

ABSTRACT

New functional materials for engineering gingival tissue are still in the early stages of development. Materials for such applications must maintain volume and have advantageous mechanical and biological characteristics for tissue regeneration, to be an alternative to autografts, which are the current benchmark of care. In this work, methacrylated gelatin (GelMa) was photocrosslinked with synthetic immunomodulatory methacrylated divinyl urethanes and defined monomers to generate composite scaffolds. Using a factorial design, with the synthetic monomers of a degradable polar/hydrophobic/ionic polyurethane (D-PHI) and GelMa, composite materials were electrospun with polycarbonate urethane (PCNU) and light-cured in-flight. The materials had significantly different relative hydrophilicities, with unique biodegradation profiles associated with specific formulations, thereby providing good guidance to achieving desired mechanical characteristics and scaffold resorption for gingival tissue regeneration. In accelerated esterase/collagenase degradation models, the new materials exhibited an initial rapid weight loss followed by a more gradual rate of degradation. The degradation profile allowed for the early infiltration of human adipose-derived stromal/stem cells, while still enabling the graft's structural integrity to be maintained. In conclusion, the materials provide a promising candidate platform for the regeneration of oral soft tissues, addressing the requirement of viable tissue infiltration while maintaining volume and mechanical integrity. STATEMENT OF SIGNIFICANCE: There is a need for the development of more functional and efficacious materials for the treatment of gingival recession. To address significant limitations in current material formulations, we sought to investigate the development of methacrylated gelatin (GelMa) and oligo-urethane/methacrylate monomer composite materials. A factorial design was used to electrospin four new formulations containing four to five monomers. Synthetic immunomodulatory monomers were crosslinked with GelMa and electrospun with a polycarbonate urethane resulting in unique mechanical properties, and resorption rates which align with the original design criteria for gingival tissue engineering. The materials may have applications in tissue engineering and can be readily manufactured. The findings of this work may help better direct the efforts of tissue engineering and material manufacturing.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Gelatin/pharmacology , Gelatin/chemistry , Connective Tissue , Polyurethanes/pharmacology , Polyurethanes/chemistry
2.
Acta Biomater ; 166: 167-186, 2023 08.
Article in English | MEDLINE | ID: mdl-37207744

ABSTRACT

Biodegradable hydrogels are growing in demand to enable the delivery of biomolecules (e.g. growth factors) for regenerative medicine. This research investigated the resorption of an oligourethane/polyacrylic acid hydrogel, a biodegradable hydrogel which supports tissue regeneration. The Arrhenius model was used to characterize the resorption of the polymeric gels in relevant in vitro conditions, and the Flory-Rehner equation was used to correlate the volumetric swelling ratio with the extent of degradation. The study found that the swelling rate of the hydrogel follows the Arrhenius model at elevated temperatures, estimating degradation time in saline solution at 37°C to be between 5 and 13 months, serving as a preliminary approximation of degradation in vivo. The degradation products had low cytotoxicity towards endothelial cells, and the hydrogel supported stromal cell proliferation. Additionally, the hydrogels were able to release growth factors and maintain the biomolecules' bioactivity towards cell proliferation. The study of the vascular endothelial growth factor (VEGF) release from the hydrogel used a diffusion process model, showing that the electrostatic attraction between VEGF and the anionic hydrogel allowed for controlled and sustained VEGF release over three weeks. In a rat subcutaneous implant model, a selected hydrogel with desired degradation rates exhibited minimal foreign body response and supported M2a macrophage phenotype, and vascularization. The low M1 and high M2a macrophage phenotypes within the implants were associated with tissue integration. This research supports the use of oligourethane/polyacrylic acid hydrogels as a promising material for delivering growth factors and supporting tissue regeneration. STATEMENT OF SIGNIFICANCE: There is a need for degradable elastomeric hydrogels that can support the formation of soft tissues and minimize long-term foreign body responses. An Arrhenius model was used to estimate the relative breakdown of hydrogels, in-vitro. The results demonstrate that hydrogels made from a combination of poly(acrylic acid) and oligo-urethane diacrylates can be designed to resorb over defined periods ranging from months to years depending on the chemical formulation prescribed by the model. The hydrogel formulations also provided for different release profiles of growth factors, relevant to tissue regeneration. In-vivo, these hydrogels had minimal inflammatory effects and showed evidence of integration into the surrounding tissue. The hydrogel approach can help the field design a broader range of biomaterials for tissue regeneration.


Subject(s)
Hydrogels , Vascular Endothelial Growth Factor A , Rats , Animals , Hydrogels/chemistry , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Biocompatible Materials/chemistry , Cell Proliferation
3.
J Magn Reson Imaging ; 58(4): 1139-1150, 2023 10.
Article in English | MEDLINE | ID: mdl-36877190

ABSTRACT

BACKGROUND: A noninvasive method to track implanted biomaterials is desirable for real-time monitoring of material interactions with host tissues and assessment of efficacy and safety. PURPOSE: To explore quantitative in vivo tracking of polyurethane implants using a manganese porphyrin (MnP) contrast agent containing a covalent binding site for pairing to polymers. STUDY TYPE: Prospective, longitudinal. ANIMAL MODEL: Rodent model of dorsal subcutaneous implants (10 female Sprague Dawley rats). FIELD STRENGTH/SEQUENCE: A 3-T; two-dimensional (2D) T1-weighted spin-echo (SE), T2-weighted turbo SE, three-dimensional (3D) spoiled gradient-echo T1 mapping with variable flip angles. ASSESSMENT: A new MnP-vinyl contrast agent to covalently label polyurethane hydrogels was synthesized and chemically characterized. Stability of binding was assessed in vitro. MRI was performed in vitro on unlabeled hydrogels and hydrogels labeled at different concentrations, and in vivo on rats with unlabeled and labeled hydrogels implanted dorsally. In vivo MRI was performed at 1, 3, 5, and 7 weeks postimplantation. Implants were easily identified on T1-weighted SE, and fluid accumulation from inflammation was distinguished on T2-weighted turbo SE. Implants were segmented on contiguous T1-weighted SPGR slices using a threshold of 1.8 times the background muscle signal intensity; implant volume and mean T1 values were then calculated at each timepoint. Histopathology was performed on implants in the same plane as MRI and compared to imaging results. STATISTICAL TESTS: Unpaired t-tests and one-way analysis of variance (ANOVA) were used for comparisons. A P value <0.05 was considered to be statistically significant. RESULTS: Hydrogel labeling with MnP resulted in a significant T1 reduction in vitro (T1 = 517 ± 36 msec vs. 879 ± 147 msec unlabeled). Mean T1 values of labeled implants in rats increased significantly by 23% over time, from 1 to 7 weeks postimplantation (651 ± 49 msec to 801 ± 72 msec), indicating decreasing implant density. DATA CONCLUSION: Polymer-binding MnP enables in vivo tracking of vinyl-group coupling polymers. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1.


Subject(s)
Contrast Media , Porphyrins , Female , Rats , Animals , Polyurethanes , Manganese , Hydrogels , Prospective Studies , Rats, Sprague-Dawley , Magnetic Resonance Imaging/methods
4.
Acta Biomater ; 89: 279-288, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30853610

ABSTRACT

The synthesis of microspheres for tissue regeneration requires good control over the particle size and size distribution. This is particularly important when considering the immune response that may be triggered by the presence of particles in tissue. This report outlines the design of an injectable microsphere system using a low-inflammatory, degradable-polar-hydrophobic-ionic polyurethane, termed D-PHI, and investigates the system's performance in vitro and in vivo. Crosslinked polyurethane microspheres were prepared via a rapid and controlled process based on membrane emulsion and subsequent photopolymerization. The fabrication process efficiently generated microspheres with a narrow size distribution (12 ±â€¯2 µm, PDI = 0.03). The D-PHI microspheres exhibited a slow and controlled degradation and a high capacity for water uptake. Water within the particles existed primarily within the pores of the particles and to a lesser degree within the polymer matrix itself. D-PHI microspheres supported human endothelial and fibroblast cell growth, and they maintained human blood-derived monocytes in a low-inflammatory state. Sub-acute toxicity was assessed for the particles after being administered via intramuscular injection in the gastrocnemius muscle of rats. Cellular infiltration and vascularization into the tissue region where the particles were deposited were observed along with an absence of a fibrous capsule around the particles. The microspheres did not cause elevated human monocyte induced inflammatory character, and supported tissue integration without a prolonged inflammatory response in the rat muscle. These injectable, degradable and low-inflammatory microspheres provide an attractive system for potential drug delivery and tissue regeneration applications in future studies. STATEMENT OF SIGNIFICANCE: Biodegradable, synthetic polymers are attractive candidates for generating tailored drug delivery vehicles and tissue scaffolds owing to their diverse chemical and physical properties that can be customised for delivering defined macromolecules at specific sites in the body. The past two decades have yielded interesting work exploring the fabrication of polymer microspheres with a narrow size distribution. However, the markedly low number of synthetic polymer chemistries currently used for microsphere production exhibit elevated proinflammatory character, both acute and chronic. Furthermore, a limited number of studies have explored the biocompatibility and immune response of polymeric microspheres with human primary cells and in vivo. In the current study, a method was conceived for efficiently generating low-activating polyurethane microspheres with respect to in vitro monocytes and in vivo macrophages. The biodegradable polyurethane, which contained multiple chemistry function and which has previously demonstrated anti-inflammatory properties in film and mm scale scaffold form, was selected as the base material. In this work we undertook the use of a room temperature membrane emulsification photopolymerization approach to avoid the need for high temperature cures and the use of solvents. The response of immune cells to the microspheres was studied with human primary cells and in the rat gastrocnemius muscle. The present work reveals important progress in the design of microspheres, with well-characterized low monocyte-activating properties and the translational advantages of a synthetic polyurethane which could be investigated in future studies for potential macromolecule delivery and tissue regeneration applications.


Subject(s)
Biodegradable Plastics , Human Umbilical Vein Endothelial Cells/metabolism , Membranes, Artificial , Microspheres , Monocytes/metabolism , Muscle, Skeletal/metabolism , Polyurethanes , Animals , Biodegradable Plastics/chemical synthesis , Biodegradable Plastics/chemistry , Biodegradable Plastics/pharmacology , Emulsions , Female , Human Umbilical Vein Endothelial Cells/pathology , Humans , Monocytes/pathology , Muscle, Skeletal/pathology , Polymerization , Polyurethanes/chemical synthesis , Polyurethanes/chemistry , Polyurethanes/pharmacology , Rats , Rats, Sprague-Dawley
5.
Analyst ; 140(16): 5732-41, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26161455

ABSTRACT

The kinetics of toxicity of doxorubicin (Dox) and gold nanoparticle-conjugated doxorubicin (Au-Dox) were investigated in cultured B16 melanoma cells and cardiomyocytes using real-time cell-growth imaging. Both bolus exposure and continuous exposure were used. Modeling of the growth curve dynamics suggested patterns of uptake and/or expulsion of the drug that were different for the different cell lines and exposures. Dox alone in B16 cells fit to a model of slow drug buildup, whereas Au-Dox fit to a pattern of initial high drug efficacy followed by a decrease. In cardiomyocytes, the best fit was to a model of increasing drug concentration which then began to decrease, consistent with breakdown of the doxorubicin in solution. Cardiomyocytes were more sensitive than B16 cells to Dox alone (IC50 123 ± 2 nM vs. 270 ± 2 nM with continuous exposure), but were dramatically less sensitive to Au-Dox (IC50 1 ± 0.1 µM vs. 58 ± 5 nM with continuous exposure). Bolus exposure for 40 min led to significant cell death in B16 cells but not in cardiomyocytes. Fluorescence lifetime imaging (FLIM) showed different patterns of uptake of Au-Dox in the two cell types that explained the differential toxicity. While Au-Dox concentrated in the nuclei of B16 cells, it remained endosomal in cardiomyocytes. These results suggest that stable conjugates of nanoparticles to doxorubicin may be useful for treating resistant cancers while sparing healthy tissue.


Subject(s)
Doxorubicin/toxicity , Gold/toxicity , Metal Nanoparticles/toxicity , Myocytes, Cardiac/drug effects , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/chemistry , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Microscopy, Fluorescence , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...