Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
J Environ Manage ; 365: 121603, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963967

ABSTRACT

Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.


Subject(s)
Membranes, Artificial , Silanes , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Silanes/chemistry , Water Pollutants, Chemical/chemistry , Metals/chemistry , Oils/chemistry , Propylamines/chemistry , Salts/chemistry , Hydrophobic and Hydrophilic Interactions , Ions , Polyvinyls/chemistry
2.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893388

ABSTRACT

Drilling through shale formations can be expensive and time-consuming due to the instability of the wellbore. Further, there is a need to develop inhibitors that are environmentally friendly. Our study discovered a cost-effective solution to this problem using Gum Arabic (ArG). We evaluated the inhibition potential of an ArG clay swelling inhibitor and fluid loss controller in water-based mud (WBM) by conducting a linear swelling test, capillary suction timer test, and zeta potential, fluid loss, and rheology tests. Our results displayed a significant reduction in linear swelling of bentonite clay (Na-Ben) by up to 36.1% at a concentration of 1.0 wt. % ArG. The capillary suction timer (CST) showed that capillary suction time also increased with the increase in the concentration of ArG, which indicates the fluid-loss-controlling potential of ArG. Adding ArG to the drilling mud prominently decreased fluid loss by up to 50%. Further, ArG reduced the shear stresses of the base mud, showing its inhibition and friction-reducing effect. These findings suggest that ArG is a strong candidate for an alternate green swelling inhibitor and fluid loss controller in WBM. Introducing this new green additive could significantly reduce non-productive time and costs associated with wellbore instability while drilling. Further, a dynamic linear swelling model, based on machine learning (ML), was created to forecast the linear swelling capacity of clay samples treated with ArG. The ML model proposed demonstrates exceptional accuracy (R2 score = 0.998 on testing) in predicting the swelling properties of ArG in drilling mud.

3.
Sci Rep ; 14(1): 13876, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880865

ABSTRACT

This study presents a new mathematical framework for analyzing the behavior of semiconductor elastic materials subjected to an external magnetic field. The framework encompasses the interaction between plasma, thermal, and elastic waves. A novel, fully coupled mathematical model that describes the plasma thermoelastic behavior of semiconductor materials is derived. Our new model is applied to obtain the solution to Danilovskaya's problem, which is formed from an isotropic homogeneous semiconductor material. The Laplace transform is utilized to get the solution in the frequency domain using a direct approach. Numerical methods are employed to calculate the inverse Laplace transform, enabling the determination of the solution in the physical domain. Graphical representations are utilized to depict the numerical outcomes of many physical fields, including temperature, stress, displacement, chemical potential, carrier density, and current carrier distributions. These representations are generated for different values of time and depth of the semiconductor material. Ultimately, we receive a comparison between our model and several earlier fundamental models, which is then graphically represented.

4.
Luminescence ; 39(6): e4800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923447

ABSTRACT

Counterfeiting of banknotes, important documents, and branded goods continues to be a major worldwide problem for governments, businesses, and consumers. This problem has serious financial, security, and health implications. Due to their stability for printing on various substrates, the photochromic anticounterfeiting inks have received important interest. There have been various photochromic agents, such as polymer nanoparticles, quantum and carbon dots, and organic and inorganic fluorophores and luminophores, which have been broadly used for antiforging applications. In comparison to organic agents, inorganic photochromic materials have better stability under reversible/long-term light illumination. Recently, the remarkable optical characteristics and chemical stability of photoluminescent and photochromic agents have led to their extensive usage anticounterfeiting products. There have been also several strategies to tackle the rising problem of counterfeiting. Both of solvent-based and water-based inks have been developed for security encoding purposes. Additionally, the printing methods, including screen printing, labeling, stamping, inkjet printing, and handwriting, that have been used to apply anticounterfeiting inks onto various surfaces are discussed. The limitations of photoluminescent and photochromic agents and the potential for their future preparation to combat counterfeiting were discussed. This review would benefit academic researchers and industrial developers who are interested in the area of security printing.


Subject(s)
Ink , Printing , Photochemical Processes , Polymers/chemistry , Luminescence
5.
Int J Biol Macromol ; 257(Pt 2): 128817, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103663

ABSTRACT

A novel smart biochromic textile sensor was developed by immobilizing anthocyanin extract into electrospun cellulose acetate nanofibers to detect bacteria for numerous potential uses, such as healthcare monitoring. Red-cabbage was employed to extract anthocyanin, which was then applied to cellulose acetate nanofibers treated with potassium aluminum sulfate as a mordant. Thus, nanoparticles (NPs) of mordant/anthocyanin (65-115 nm) were generated in situ on the surface of cellulose acetate nanofibrous film. The pH of a growing bacterial culture medium is known to change when bacteria multiply. The absorbance spectra revealed a bluish shift from 595 nm (purple) to 448 nm (green) during the growth of Gram-negative bacteria (E. coli) owing to the discharge of total volatile basic amines as secretion metabolites. On the other hand, the absorption spectra of a growing bacterial culture containing Gram-positive bacteria (L. acidophilus) showed a blue shift from 595 nm (purplish) to 478 nm (pink) as a result of releasing lactic acid as a secretion metabolite. Both absorbance spectra and CIE Lab parameters were used to determine the color shifts. Various analytical techniques were utilized to study the morphology of the anthocyanin-encapsulated electrospun cellulose nanofibers. The cytotoxic effects of the colored cellulose acetate nanofibers were tested.


Subject(s)
Nanofibers , Anthocyanins/pharmacology , Escherichia coli , Colorimetry , Cellulose , Lactobacillus acidophilus
6.
Heliyon ; 9(11): e22158, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034666

ABSTRACT

In this study, a silver nanoparticle anchored transparent tape sensor was used to detect 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) adsorbed on carbon steel surface utilizing the surface-enhanced Raman scattering (SERS) technique. SERS detection enabled the extreme amplification of Raman signals emitted by inhibitor molecules in order to describe their adsorption behavior on metallic/alloy surfaces. The strong corrosion inhibition performance of AEP-GO against carbon steel corrosion in 15 % HCl solution was proven by weight loss, electrochemical measurements and surface characterization techniques in a previous study. The SERS analysis showed the Raman peaks intensity of AEP-GO on the carbon surface gradually increases with increasing AEP-GO concentration. The increasing intensity with concentration correlated well with the previously reported weight loss and electrochemical results. DFT calculation was also carried out to understand the nature of interaction between the adsorbed AEP-GO molecules and the silver nanoparticles. The AEP-GO_Ag adduct's optimized structure reveals the silver metals approached the oxygen atom at the GO epoxy group in AEP-GO rather than the oxygen atoms at the carbonyl and hydroxyl groups. With no restrictions on substrate materials, the fabricated SERS sensor created in this study can be employed as a versatile sensor to characterize corrosion adsorption processes on metal surfaces.

7.
JFMS Open Rep ; 9(2): 20551169231190611, 2023.
Article in English | MEDLINE | ID: mdl-37810577

ABSTRACT

Case summary: A 3-year-old male neutered Sphynx cat was referred for history of chronically increased liver enzymes and lower urinary tract signs that were first reported when the cat was 5 months old. Urine metabolic profile revealed increased amino aciduria and glucosuria despite normoglycemia, suggesting Fanconi syndrome. Urine sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a banding pattern suggestive of primary tubular damage. Serial blood work showed non-regenerative normocytic normochromic anemia, persistently elevated liver enzymes, worsening azotemia and progressive hyperchloremic metabolic acidosis. Ultrasound revealed irregular kidneys and bilaterally hyperechoic cortices and medullae with a loss of normal corticomedullary distinction. Laparoscopic kidney biopsy revealed a moderate-to-severe chronic interstitial fibrosis with chronic lymphoplasmacytic inflammation, tubular degeneration and atrophy, mild glomerulosclerosis and mild large vascular amyloidosis. Tubular epithelial cell karyomegaly was multifocally evident throughout the kidney. The liver had moderate diffuse zone 1 hepatocellular atrophy, periportal fibrosis, biliary hyperplasia, mild perisinusoidal amyloidosis and hepatocyte karyomegaly in zones 2 and 3. The patient continued to decline and developed polyuria, polydipsia, lethargy and hyporexia irrespective of rigorous management, which failed to curtail the progressive anemia and azotemia. The patient was euthanized 8 months from the onset of clinical signs. Relevance and novel information: Fanconi syndrome in cats is a rare condition, with most reports occurring secondary to chlorambucil treatment. This is the first known case of Fanconi syndrome occurring with concurrent hepatorenal epithelial karyomegaly in a young Sphynx cat.

8.
Vet Radiol Ultrasound ; 64(6): E73-E77, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37667996

ABSTRACT

An 8-year-old male neutered French Bulldog was referred for continued nasal dyspnea following a staphylectomy revision performed one month prior to presentation. The patient had a prior history of skin allergies and underwent brachycephalic airway surgery performed at one year of age. Computed tomography (CT) revealed an osseous-encased, cystic mass arising from the right maxillary sinus. Surgical biopsies were performed and a mucocele with sinusitis and glandular hyperplasia was diagnosed. Based on our systematic review of the literature, maxillary sinus mucocele has not been reported in the dog and should be among the differentials for sinus cystic masses.


Subject(s)
Dog Diseases , Dogs , Mucocele , Paranasal Sinus Diseases , Animals , Male , Bone and Bones/pathology , Dog Diseases/diagnostic imaging , Dog Diseases/surgery , Dog Diseases/pathology , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/surgery , Maxillary Sinus/pathology , Mucocele/diagnostic imaging , Mucocele/surgery , Mucocele/veterinary , Paranasal Sinus Diseases/diagnostic imaging , Paranasal Sinus Diseases/surgery , Paranasal Sinus Diseases/veterinary , Tomography, X-Ray Computed/veterinary
9.
Eur J Paediatr Dent ; : 1, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37691596

ABSTRACT

AIM: To investigate the effect of 38% SDF and its serial dilutions on the Stem cells from Human Exfoliated Deciduous teeth (SHED) and its ability to release growth factors from deciduous dentine. METHODS: The viability of SHED post-exposure to 38%, 3.8%, 0.38%, 0.038%, and 0.0038% SDF were assessed at 2, 5, and 7 days using the CyQuant assay, and results were validated using the MTT assay. The osteogenic differentiation of the cells was also investigated post-exposure to 0.0038% SDF. The release of the growth factors; TGF-ß1, FGF-b, BMP-2, and VEGF from deciduous dentin discs exposed to 38% SDF, 0.0038% SDF, Ca(OH)2, MTA, and 17% EDTA were examined using ELISA. Statistical analysis was performed using means and standard deviations (p < 0.05). Two-way ANOVA compared the means of more than two groups with Tukey's multiple comparison test. The unpaired t-test was also used to compare the differences between the two data sets. CONCLUSION: 38% SDF released dentinogenic growth factors from dentin discs, potentially explaining its role in reactionary dentinogenesis. Moreover, 0.0038% SDF resulted in a non-cytotoxic concentration that enhanced cellular proliferation and released bioactive molecules from dentin comparable to the 38% concentration. After further investigations, the 0.0038% dilution of SDF could present itself as a clinical concentration.

10.
Int J Biol Macromol ; 248: 125872, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482158

ABSTRACT

Nowadays, the combined knowledge and experience in biomedical research and material sciences results in the innovation of smart materials that could efficiently overcome the problems of microbial contaminations. Herein, a new drug delivery platform prepared by grafting sodium alginate with ß-carboxyethyl acrylate and acrylamide was described and characterized. 9-Aminoacridine (9-AA), and kanamycin sulfate (KS) were separately loaded into the hydrogel in situ during graft polymerization. The grafting efficiency for the resulting hydrogels was 70.01-78.08 %. The chemical structure of the hydrogels, thermogravimetric analysis, and morphological features were investigated. The swelling study revealed that the hydrogel without drugs achieved a superior swelling rate compared to drug-loaded hydrogels. The hydrogel tuned the drug-release rate in a pH-dependent manner. Furthermore, the antibacterial study suggested that the hydrogels encapsulating 9-AA (88.6 %) or KS (89.3 %) exhibited comparable antibacterial activity against Gram-positive and Gram-negative bacterial strains. Finally, the cytocompatibility study conducted on normal lung cell line (Vero cells) demonstrated neglectable to tolerable toxicity for the drug-loaded hydrogel. More interestingly, the cell viability for the blank hydrogel was 92.5 %, implying its suitability for biomedical applications.


Subject(s)
Alginates , Hydrogels , Animals , Chlorocebus aethiops , Hydrogels/pharmacology , Hydrogels/chemistry , Vero Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Delivery Systems , Kanamycin
11.
Glia ; 71(9): 2154-2179, 2023 09.
Article in English | MEDLINE | ID: mdl-37199240

ABSTRACT

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide, with a greater prevalence in men than women. The etiology of PD is largely unknown, although environmental exposures and neuroinflammation are linked to protein misfolding and disease progression. Activated microglia are known to promote neuroinflammation in PD, but how environmental agents interact with specific innate immune signaling pathways in microglia to stimulate conversion to a neurotoxic phenotype is not well understood. To determine how nuclear factor kappa B (NF-κB) signaling dynamics in microglia modulate neuroinflammation and dopaminergic neurodegeneration, we generated mice deficient in NF-κB activation in microglia (CX3CR1-Cre::IKK2fl/fl ) and exposed them to 2.5 mg/kg/day of rotenone for 14 days, followed by a 14-day post-lesioning incubation period. We postulated that inhibition of NF-κB signaling in microglia would reduce overall inflammatory injury in lesioned mice. Subsequent analysis indicated decreased expression of the NF-κB-regulated autophagy gene, sequestosome 1 (p62), in microglia, which is required for targeting ubiquitinated α-synuclein (α-syn) for lysosomal degradation. Knock-out animals had increased accumulation of misfolded α-syn within microglia, despite an overall reduction in neurodegeneration. Interestingly, this occurred more prominently in males. These data suggest that microglia play key biological roles in the degradation and clearance of misfolded α-syn and this process works in concert with the innate immune response associated with neuroinflammation. Importantly, the accumulation of misfolded α-syn protein aggregates alone did not increase neurodegeneration following exposure to rotenone but required the NF-κB-dependent inflammatory response in microglia.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Male , Female , Mice , Animals , Parkinson Disease/genetics , alpha-Synuclein/metabolism , NF-kappa B/metabolism , Rotenone/toxicity , Rotenone/metabolism , Microglia/metabolism , Neuroinflammatory Diseases , Neurodegenerative Diseases/metabolism , Autophagy , Dopaminergic Neurons/metabolism
12.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985971

ABSTRACT

In this work, polyethyleneimine-grafted graphene oxide (PEI/GO) is synthesized using graphene, polyethyleneimine, and trimesoyl chloride. Both graphene oxide and PEI/GO are characterized by a Fourier-transform infrared (FTIR) spectrometer, a scanning electron microscope (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Characterization results confirm that polyethyleneimine is uniformly grafted on the graphene oxide nanosheets and, thus, also confirm the successful synthesis of PEI/GO. PEI/GO adsorbent is then evaluated for the removal of lead (Pb2+) from aqueous solutions, and the optimum adsorption is attained at pH 6, contact time of 120 min, and PEI/GO dose of 0.1 g. While chemosorption is dominating at low Pb2+ concentrations, physisorption is dominating at high concentrations and the adsorption rate is controlled by the boundary-layer diffusion step. In addition, the isotherm study confirms the strong interaction between Pb2+ ions and PEI/GO and reveals that the adsorption process obeys well the Freundlich isotherm model (R2 = 0.9932) and the maximum adsorption capacity (qm) is 64.94 mg/g, which is quite high compared to some of the reported adsorbents. Furthermore, the thermodynamic study confirms the spontaneity (negative ΔG° and positive ΔS°) and the endothermic nature (ΔH° = 19.73 kJ/mol) of the adsorption process. The prepared adsorbent (PEI/GO) offers a potential promise for wastewater treatment because of its fast and high uptake removal capacity and could be used as an effective adsorbent for the removal of Pb2+-ions and other heavy metals from industrial wastewater.

13.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772063

ABSTRACT

A polyester resin was strengthened with electrospun glass nanofibers to create long-lasting photochromic and photoluminescent products, such as smart windows and concrete, as well as anti-counterfeiting patterns. A transparent glass@polyester (GLS@PET) sheet was created by physically immobilizing lanthanide-doped aluminate (LA) nanoparticles (NPs). The spectral analysis using the CIE Lab and luminescence revealed that the transparent GLS@PET samples turned green under ultraviolet light and greenish-yellow in the dark. The detected photochromism can be quickly reversed in the photoluminescent GLS@PET hybrids at low concentrations of LANPs. Conversely, the GLS@PET substrates with the highest phosphor concentrations exhibited sustained luminosity with slow reversibility. Transmission electron microscopic analysis (TEM) and scanning electron microscopy (SEM) were utilized to examine the morphological features of lanthanide-doped aluminate nanoparticles (LANPs) and glass nanofibers to display diameters of 7-15 nm and 90-140 nm, respectively. SEM, energy-dispersive X-ray spectroscopy (EDXA), and X-ray fluorescence (XRF) were used to analyze the luminous GLS@PET substrates for their morphology and elemental composition. The glass nanofibers were reinforced into the polyester resin as a roughening agent to improve its mechanical properties. Scratch resistance was found to be significantly increased in the created photoluminescent GLS@PET substrates when compared with the LANPs-free substrate. When excited at 368 nm, the observed photoluminescence spectra showed an emission peak at 518 nm. The results demonstrated improved hydrophobicity and UV blocking properties in the luminescent colorless GLS@PET hybrids.

14.
Int J Biol Macromol ; 229: 210-223, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36592846

ABSTRACT

Functionalization and various applications of biomaterials have progressively gained a major interest due to the cost-effectiveness, renewability, and biodegradability of these substrates. The current work focalized on the functionalization of microcrystalline cellulose with polyethyleneimine solution (3 %, 5 %, and 10 %) and hydrazine sulfate salt (1:1, 1:2, 2:1) using an impregnation method. Untreated and treated samples were characterized using FT-IR, SEM, XRD, TGA, and DTA analyses. The crystallinity index values for control microcrystalline cellulose, cellulose-polyethyleneimine, and cellulose-hydrazine were 57.13.8 %, 57.29 %, and 52.62 %, respectively. Cellulose-polyethyleneimine (5 %) and cellulose-hydrazine (1:1) displayed the highest adsorption capacities for calmagite (an anionic dye). At equilibrium, the maximum adsorption capacities for calmagite achieved 104 mg/g for cellulose-polyethyleneimine (5 %), 45 mg/g for cellulose-hydrazine (1:1), and only 12.4 mg/g for untreated cellulose. Adsorption kinetics complied well with the pseudo-second-order kinetic model. The adsorption isotherm fitted well with the Langmuir isotherm. Overall, the functionalized cellulosic samples could be considered potential materials for the treatment of contaminated waters.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Polyethyleneimine/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Cellulose/chemistry , Hydrazines , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
15.
J Colloid Interface Sci ; 630(Pt B): 591-610, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36335778

ABSTRACT

Experimental weight loss and electrochemical measurements were used at ambient and high temperatures to evaluate the corrosion inhibition efficacies of diaminodecane functionalized graphene oxide (DAD-GO) and diaminododecane functionalized graphene oxide (DADD-GO) against carbon steel corrosion in 15.0 %HCl, mimicking an acidizing environment in an oil/gas well. The GO was made from waste graphite and then grafted with the diaminoalkanes (DAD & DADD). The GO and functionalized GOs were described using FTIR, Raman, TEM, and TGA. Concentration and temperature effects on the inhibitors'performance were also looked into. The inhibition efficiency increased with concentration at room temperature, reaching a maximum of 84 % for DAD-GO and 78 % for DADD-GO at a concentration of 5 ppm for both. At the temperatures studied, the inhibitors performed well at extremely low concentrations; however, as the temperature rises, the inhibitor's performance decreases. According to the PDP measurement, the inhibitors function primarily as mixed-type inhibitors. The Langmuir adsorption theory was found to be followed by thestudied compound. AFM, SEM, EDX, and FTIR characterization of the steel surfaces revealed that the functionalized GOs molecules adsorbed on the steel to create a protective layer that insulated the steel from aggressiveacid assault after the immersion time (24 h) in the inhibited solutions. DFT calculations were utilized to determine the relative stability of functionalized GOs toGOand to learn more about the inhibitor molecules' interactions with the steel surface. The DFT calculations corroborated the experimental findings. This study is important in tackling two significant environmental concerns: corrosion and waste management because GO is manufactured from waste graphite.


Subject(s)
Graphite , Steel , Corrosion , Steel/chemistry , Carbon , Oil and Gas Fields
16.
Birth Defects Res ; 115(4): 441-457, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36448314

ABSTRACT

BACKGROUND: With the increasing production and applications of silver nanoparticles (AgNPs), they can be released into the air, water, and soil environments leading to direct exposure to human beings. On this, the current study revealed the physiological, histological, and genotoxic effects of the green biosynthesized AgNPs using two methods; lemon juice or saponin reduction on the maternal and fetal tissues. METHODS: Twenty-eight pregnant female rats were divided into four groups (seven/group) and orally administrated the corresponding treatment doses once daily from the first to the 19th gestational day. The first group was administered distilled water as a control. The second group was administrated saponin. The third was administrated AgNps. The fourth was administrated saponin-loaded silver nanoparticles (Sn-AgNPs). RESULTS: Compared with the control group, the serum of pregnant rats treated with saponin, AgNPs, and Sn-AgNPs exhibited significant alterations in liver and kidney function parameters. In addition, maternal hepatic and renal tissues showed elevated oxidative stress, with a significant increase in the comet parameters. Histologically, both mothers and fetuses showed changes in the liver and kidney tissues. CONCLUSIONS: Green synthesized AgNPs have toxic effects on maternal and fetal tissues. Sn-AgNPs revealed an increase in the transfer, accumulation, and toxicity.


Subject(s)
Metal Nanoparticles , Silver , Pregnancy , Humans , Female , Rats , Silver/toxicity , Metal Nanoparticles/toxicity , Fetus , Liver/pathology , Mothers , Animals
17.
J Colloid Interface Sci ; 629(Pt B): 522-534, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36174295

ABSTRACT

The superhydrophobic/superoleophilic materials based on polyurethane foams have been layered with three different polymers and extensive modification with iron/magnetic nanocomposite. The general desires are to study the effect of the polymer layer and to eliminate the oil contaminant from the oil-water system which is crucial due to the development of environmental technologies. These materials were generated by facile dip-coating two-step method on the polyurethane foams (PUF) surface. PUF was directly layered with polydopamine/polypyrrole/polyaniline (PDA/PPy/PANI) and incorporated with Fe-SA (stearic acid) nanocomposites by ultrasonication and refluxing. In addition, characterization by FTIR, SEM/EDX, XRD, and TGA presented that the polymer layer and Fe-SA nanocomposites successfully covered the PUF surface caused by the chelating interaction between the carboxylates and active sites on iron particles due to intermolecular hydrogen bond interaction. Interestingly, the water contact angle (WCA) measurement of the nanocomposites displayed that the contact angle significantly improved up to 164°. After 20 cycles of oil absorption capacity, the WCA steadily remained up to 153° indicating powerful superhydrophobic properties of the materials. Furthermore, the oil absorption capacity of the materials was evaluated using typical oil-water separation methods such as reusability, separation efficiency, and oil permeate flux. The results exhibited that the modified PUFs have enhanced the absorption capacity up to 44 times the foam weight, 99 % separation efficiency, and about 8000 L.m-2.h-1 oil flux. For oil removal, the dyed oil phase was rapidly absorbed within 2 s confirming the highly used products for a wide area of oil-water separation. PDA-coated PUF nanocomposites obtained the most outstanding results due to their remarkable interfacial adhesion properties which provide larger active functional groups for hydrogen bonding interaction on PUF surface and Fe-SA nanocomposites.

18.
Front Bioeng Biotechnol ; 10: 1013354, 2022.
Article in English | MEDLINE | ID: mdl-36568300

ABSTRACT

Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.

19.
Polymers (Basel) ; 14(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36365479

ABSTRACT

Wastewater, which is rich with heavy elements, dyes, and pesticides, represents one of the most important environmental pollutants. Thus, it has been significant to fabricate environmentally friendly polymers with high adsorption ability for those pollutants. Herein, crosslinked chitosan (C-Cs) was prepared using isopropyl acrylamide and methylene bisacrylamide. Carbon nanoparticles (C-NPs) were also obtained by the treatment of the agricultural wastes, which was used with C-Cs to prepare C-Cs/C-NPs nanocomposite (C-Cs/C-NC). Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscope (TEM) were used to investigate the prepared adsorbent. C-Cs, C-NPs, and C-Cs/C-NC were used in water treatment for the adsorption of lead ions (Pb+2) and methylene blue (MB). The adsorption process occurred by the prepared samples was investigated under different conditions, including contact time, as well as different doses and concentrations of adsorbents. The findings exhibited that the adsorption of Pb+2 and MB by C-Cs/C-NC was higher than C-Cs and C-NPs. In addition, the kinetic and isotherm models were studied, where the results showed that the adsorption of Pb+2 and MB by various adsorbents obeys pseudo-second-order and Langmuir isotherms, respectively.

20.
RSC Adv ; 12(37): 23869-23888, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36093256

ABSTRACT

Anthropogenic carbon dioxide (CO2) emissions have dramatically increased since the industrial revolution, building up in the atmosphere and causing global warming. Sustainable CO2 capture, utilization, and storage (CCUS) techniques are required, and materials and technologies for CO2 capture, conversion, and utilization are of interest. Different CCUS methods such as adsorption, absorption, biochemical, and membrane methods are being developed. Besides, there has been a good advancement in CO2 conversion into viable products, such as photoreduction of CO2 using sunlight into hydrocarbon fuels, including methane and methanol, which is a promising method to use CO2 as fuel feedstock using the advantages of solar energy. There are several methods and various materials used for CO2 conversion. Also, efficient nanostructured catalysts are used for CO2 photoreduction. This review discusses the sources of CO2 emission, the strategies for minimizing CO2 emissions, and CO2 sequestration. In addition, the review highlights the technologies for CO2 capture, separation, and storage. Two categories, non-conversion utilization (direct use) of CO2 and conversion of CO2 to chemicals and energy products, are used to classify different forms of CO2 utilization. Direct utilization of CO2 includes enhanced oil and gas recovery, welding, foaming, and propellants, and the use of supercritical CO2 as a solvent. The conversion of CO2 into chemicals and energy products via chemical processes and photosynthesis is a promising way to reduce CO2 emissions and generate more economically valuable chemicals. Different catalytic systems, such as inorganics, organics, biological, and hybrid systems, are provided. Lastly, a summary and perspectives on this emerging research field are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...