Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JAC Antimicrob Resist ; 6(2): dlae021, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38449514

ABSTRACT

Background: MDR pathogens including ESBL- and/or carbapenemase-producing Enterobacterales (ESBL-PE and CPE) increasingly occur worldwide in the One Health context. Objectives: This proof-of-principle study investigated the occurrence of ESBL-PE in surface water in the Ashanti Region in Ghana, sub-Saharan Africa (SSA), and investigated their additional genotypic and phenotypic antimicrobial resistance features as part of the Surveillance Outbreak Response Management and Analysis System (SORMAS). Methods: From 75 water samples overall, from nine small to medium-sized river streams and one pond spatially connected to a channelled water stream in the greater area of Kumasi (capital of the Ashanti Region in Ghana) in 2021, we isolated 121 putative ESBL-PE that were subsequently subjected to in-depth genotypic and phenotypic analysis. Results: Of all 121 isolates, Escherichia coli (70.25%) and Klebsiella pneumoniae (23.14%) were the most prevalent bacterial species. In addition to ESBL enzyme-production of mostly the CTX-M-15 type, one-fifth of the isolates carried carbapenemase genes including blaNDM-5. More importantly, susceptibility testing not only confirmed phenotypic carbapenem resistance, but also revealed two isolates resistant to the just recently approved last-resort antibiotic cefiderocol. In addition, we detected several genes associated with heavy metal resistance. Conclusions: ESBL-PE and CPE occur in surface water sources in and around Kumasi in Ghana. Further surveillance and research are needed to not only improve our understanding of their exact prevalence and the reservoir function of water sources in SSA but should include the investigation of cefiderocol-resistant isolates.

2.
J Bacteriol ; 205(10): e0006423, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37791752

ABSTRACT

To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is the antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acid side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. Expression of the rcrARB operon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB. The rcrB gene encodes a hypothetical membrane protein, deletion of which substantially increases UPEC's susceptibility to HOCl. However, the mechanism behind protection by RcrB is unclear. In this study, we investigated whether (i) its mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. We provide evidence that RcrB expression is sufficient to protect E. coli from HOCl. Furthermore, RcrB expression is induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health, exacerbating the demand for alternative treatments. Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be equipped with powerful defense systems to fend off the toxic effects of reactive chlorine species. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system toward hypochlorous acid (HOCl) stress and phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Hypochlorous Acid/pharmacology , Uropathogenic Escherichia coli/metabolism , Chlorine , Urinary Tract Infections/microbiology , Oxidants/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Infections/microbiology
3.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398214

ABSTRACT

To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acids side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections (UTIs), have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. The regulon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB . rcrB encodes the putative membrane protein RcrB, deletion of which substantially increases UPEC's susceptibility to HOCl. However, many questions regarding RcrB's role remain open including whether (i) the protein's mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. Here, we provide evidence that RcrB expression is sufficient to E. coli 's protection from HOCl and induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE: Bacterial infections pose an increasing threat to human health exacerbating the demand for alternative treatment options. UPEC, the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be well equipped with powerful defense systems to fend off the toxic effects of RCS. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system towards HOCl-stress and phagocytosis. Thus, this novel HOCl-stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.

SELECTION OF CITATIONS
SEARCH DETAIL
...