Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 181: 331-346, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29981481

ABSTRACT

The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data.


Subject(s)
Algorithms , Artifacts , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/standards , Models, Theoretical , Neuroimaging/standards , Data Interpretation, Statistical , Diffusion Magnetic Resonance Imaging/methods , Humans , Infant, Newborn , Neuroimaging/methods , Sensitivity and Specificity
2.
Neuroimage ; 182: 8-38, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29793061

ABSTRACT

The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Neuroimaging/methods , Brain/anatomy & histology , Brain/diagnostic imaging , Brain/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...