Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Med Image Anal ; 94: 103134, 2024 May.
Article in English | MEDLINE | ID: mdl-38471339

ABSTRACT

Diffusion-relaxation MRI aims to extract quantitative measures that characterise microstructural tissue properties such as orientation, size, and shape, but long acquisition times are typically required. This work proposes a physics-informed learning framework to extract an optimal subset of diffusion-relaxation MRI measurements for enabling shorter acquisition times, predict non-measured signals, and estimate quantitative parameters. In vivo and synthetic brain 5D-Diffusion-T1-T2∗-weighted MRI data obtained from five healthy subjects were used for training and validation, and from a sixth participant for testing. One fully data-driven and two physics-informed machine learning methods were implemented and compared to two manual selection procedures and Cramér-Rao lower bound optimisation. The physics-informed approaches could identify measurement-subsets that yielded more consistently accurate parameter estimates in simulations than other approaches, with similar signal prediction error. Five-fold shorter protocols yielded error distributions of estimated quantitative parameters with very small effect sizes compared to estimates from the full protocol. Selected subsets commonly included a denser sampling of the shortest and longest inversion time, lowest echo time, and high b-value. The proposed framework combining machine learning and MRI physics offers a promising approach to develop shorter imaging protocols without compromising the quality of parameter estimates and signal predictions.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neuroimaging , Machine Learning
2.
J Neurol ; 271(3): 1416-1427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37995010

ABSTRACT

BACKGROUND: Dystonia is a hyperkinetic movement disorder with key motor network dysfunction implicated in pathophysiology. The UK Biobank encompasses > 500,000 participants, of whom 42,565 underwent brain MRI scanning. This study applied an optimized pre-processing pipeline, aimed at better accounting for artifact and improving data reliability, to assess for grey and white matter structural MRI changes between individuals diagnosed with primary dystonia and an unaffected control cohort. METHODS: Individuals with dystonia (n = 76) were identified from the UK Biobank using published algorithms, alongside an age- and sex-matched unaffected control cohort (n = 311). Grey matter morphometric and diffusion measures were assessed, together with white matter diffusion tensor and diffusion kurtosis metrics using tractography and tractometry. Post-hoc Neurite Orientation and Density Distribution Imaging (NODDI) was also undertaken for tracts in which significant differences were observed. RESULTS: Grey matter tremor-specific striatal differences were observed, with higher radial kurtosis. Tractography identified no white matter differences, however segmental tractometry identified localised differences, particularly in the superior cerebellar peduncles and anterior thalamic radiations, including higher fractional anisotropy and lower orientation distribution index in dystonia, compared to controls. Additional tremor-specific changes included lower neurite density index in the anterior thalamic radiations. CONCLUSIONS: Analysis of imaging data from one of the largest dystonia cohorts to date demonstrates microstructural differences in cerebellar and thalamic white matter connections, with architectural differences such as less orientation dispersion potentially being a component of the morphological structural changes implicated in dystonia. Distinct tremor-related imaging features are also implicated in both grey and white matter.


Subject(s)
Dystonia , Dystonic Disorders , White Matter , Humans , Brain , Diffusion Tensor Imaging/methods , Biological Specimen Banks , Reproducibility of Results , Tremor , UK Biobank , White Matter/diagnostic imaging , Dystonic Disorders/diagnostic imaging , Diffusion Magnetic Resonance Imaging
3.
Magn Reson Med ; 91(3): 860-885, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946584

ABSTRACT

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Consensus , Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Diffusion , Diffusion Magnetic Resonance Imaging/methods
4.
Front Neurosci ; 17: 1258408, 2023.
Article in English | MEDLINE | ID: mdl-38144210

ABSTRACT

Introduction: Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) offers improved cellular specificity to microstructure-compared to water-based methods alone-but spatial resolution and SNR is severely reduced and slow-diffusing metabolites necessitate higher b-values to accurately characterize their diffusion properties. Ultra-strong gradients allow access to higher b-values per-unit time, higher SNR for a given b-value, and shorter diffusion times, but introduce additional challenges such as eddy-current artefacts, gradient non-uniformity, and mechanical vibrations. Methods: In this work, we present initial DW-MRS data acquired on a 3T Siemens Connectom scanner equipped with ultra-strong (300 mT/m) gradients. We explore the practical issues associated with this manner of acquisition, the steps that may be taken to mitigate their impact on the data, and the potential benefits of ultra-strong gradients for DW-MRS. An in-house DW-PRESS sequence and data processing pipeline were developed to mitigate the impact of these confounds. The interaction of TE, b-value, and maximum gradient amplitude was investigated using simulations and pilot data, whereby maximum gradient amplitude was restricted. Furthermore, two DW-MRS voxels in grey and white matter were acquired using ultra-strong gradients and high b-values. Results: Simulations suggest T2-based SNR gains that are experimentally confirmed. Ultra-strong gradient acquisitions exhibit similar artefact profiles to those of lower gradient amplitude, suggesting adequate performance of artefact mitigation strategies. Gradient field non-uniformity influenced ADC estimates by up to 4% when left uncorrected. ADC and Kurtosis estimates for tNAA, tCho, and tCr align with previously published literature. Discussion: In conclusion, we successfully implemented acquisition and data processing strategies for ultra-strong gradient DW-MRS and results indicate that confounding effects of the strong gradient system can be ameliorated, while achieving shorter diffusion times and improved metabolite SNR.

5.
J Magn Reson Imaging ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38032021

ABSTRACT

Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 2.

6.
Front Neurosci ; 17: 1209521, 2023.
Article in English | MEDLINE | ID: mdl-37638307

ABSTRACT

Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.

7.
Neuroimage Clin ; 38: 103419, 2023.
Article in English | MEDLINE | ID: mdl-37192563

ABSTRACT

Structural brain MRI has proven invaluable in understanding movement disorder pathophysiology. However, most work has focused on grey/white matter volumetric (macrostructural) and white matter microstructural effects, limiting understanding of frequently implicated grey matter microstructural differences. Using ultra-strong spherical tensor encoding diffusion-weighted MRI, a persistent MRI signal was seen in healthy cerebellar grey matter even at high diffusion-weightings (b ​≥ 10,000 s/mm2). Quantifying the proportion of this signal (denoted fs), previously ascertained to originate from inside small spherical spaces, provides a potential proxy for cell body density. In this work, this approach was applied for the first time to a clinical cohort, including patients with diagnosed movement disorders in which the cerebellum has been implicated in symptom pathophysiology. Five control participants (control group 1, median age 24.5 years (20-39 years), imaged at two timepoints, demonstrated consistency in measurement of all three measures - MD (Mean Diffusivity) fs, and Ds (dot diffusivity)- with intraclass correlation coefficients (ICC) of 0.98, 0.86 and 0.76, respectively. Comparison with an older control group (control group 2 (n = 5), median age 51 years (43-58 years)) found no significant differences, neither with morphometric nor microstructural (MD (p = 0.36), fs (p = 0.17) and Ds (p = 0.22)) measures. The movement disorder cohort (Parkinson's Disease, n = 5, dystonia, n = 5. Spinocerebellar Ataxia 6, n = 5) when compared to the age-matched control cohort (Control Group 2) identified significantly lower MD (p < 0.0001 and p < 0.0001) and higher fs values (p < 0.0001 and p < 0.0001) in SCA6 and dystonia cohorts respectively. Lobar division of the cerebellum found these same differences in the superior and inferior posterior lobes, while no differences were seen in either the anterior lobes or with Ds measurements. In contrast to more conventional measures from diffusion tensor imaging, this framework provides enhanced specificity to differences in restricted spherical spaces in grey matter (including small cells) by eliminating signals from cerebrospinal fluid and axons. In the context of human and animal histopathology studies, these findings potentially implicate the cerebellar Purkinje and granule cells as contributors to the observed signal differences, with both cell types having been implicated in several neurological disorders through both postmortem and animal model studies. This novel microstructural imaging approach shows promise for improving movement disorder diagnosis, prognosis, and treatment.


Subject(s)
Dystonia , Parkinson Disease , Spinocerebellar Ataxias , White Matter , Humans , Young Adult , Adult , Middle Aged , Gray Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Dystonia/pathology , Brain , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging , Parkinson Disease/pathology , Spinocerebellar Ataxias/pathology
8.
Magn Reson Imaging ; 95: 19-26, 2023 01.
Article in English | MEDLINE | ID: mdl-36252694

ABSTRACT

PURPOSE: Using constrained spherical deconvolution (CSD)-based tractography, we aimed to obtain conjoint analysis of diffusion measures of major language white matter (WM) tracts in post-stroke aphasic patients bilaterally, and to correlate the measures of each tract to the different language deficits. MATERIAL AND METHODS: 17 aphasic patients with left hemispheric stroke, at the subacute stage, and ten age- matched controls underwent diffusion MRI examination. CSD-based tractography was performed. Diffusion measures [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)] were extracted after dissection of major language tracts bilaterally. Aphasia was assessed using language subset of hemispheric stroke scale. Comparisons of diffusion measures, for all tracts, between the two groups were performed. Partial correlations between the diffusion measures and different language components were obtained. RESULTS: In the left hemisphere, significant lower FA and or higher MD with higher RD of patients' WM tracts compared to the control group. Significant differences of diffusion measures were also evident in the right hemisphere yet, less prominent. All changes reflected damage of the tracts' integrity. Significant correlations were found between comprehension and FA of the left arcuate fasciculus (AF) and left inferior longitudinal fasciculus. Additionally, a significant correlation was found between MD of the right AF and repetition. CONCLUSION: Conjoint analysis of diffusion measures, based on CSD tractography, can provide important markers for the underlying WM changes bilaterally. Moreover, our findings emphasize that language processing can be mediated by both ventral and dorsal streams and further highlight the contribution of the right AF in repetition.


Subject(s)
Aphasia , Stroke , White Matter , Humans , White Matter/diagnostic imaging , Language , Diffusion Tensor Imaging , Neural Pathways , Aphasia/diagnostic imaging , Aphasia/etiology , Stroke/complications , Stroke/diagnostic imaging
9.
Imaging Neurosci (Camb) ; 1: 1-17, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-38405373

ABSTRACT

Diffusion tensor MRI (DT-MRI) remains the most commonly used approach to characterise white matter (WM) anisotropy. However, DT estimates may be affected by tissue orientation w.r.t. B→0 due to local gradients and intrinsic T2 orientation dependence induced by the microstructure. This work aimed to investigate whether and how diffusion tensor MRI-derived measures depend on the orientation of the head with respect to the static magnetic field, B→0. By simulating WM as two compartments, we demonstrated that compartmental T2 anisotropy can induce the dependence of diffusion tensor measures on the angle between WM fibres and the magnetic field. In in vivo experiments, reduced radial diffusivity and increased axial diffusivity were observed in white matter fibres perpendicular to B→0 compared to those parallel to B→0. Fractional anisotropy varied by up to 20% as a function of the angle between WM fibres and the orientation of the main magnetic field. To conclude, fibre orientation w.r.t. B→0 is responsible for up to 7% variance in diffusion tensor measures across the whole brain white matter from all subjects and head orientations. Fibre orientation w.r.t. B→0 may introduce additional variance in clinical research studies using diffusion tensor imaging, particularly when it is difficult to control for (e.g., fetal or neonatal imaging, or when the trajectories of fibres change due to, e.g., space occupying lesions).

10.
Eur J Neurol ; 29(11): 3418-3448, 2022 11.
Article in English | MEDLINE | ID: mdl-35785410

ABSTRACT

BACKGROUND AND PURPOSE: Structural magnetic resonance techniques have been widely applied in neurological disorders to better understand tissue changes, probing characteristics such as volume, iron deposition and diffusion. Dystonia is a hyperkinetic movement disorder, resulting in abnormal postures and pain. Its pathophysiology is poorly understood, with normal routine clinical imaging in idiopathic forms. More advanced tools provide an opportunity to identify smaller scale structural changes which may underpin pathophysiology. This review aims to provide an overview of methodological approaches undertaken in structural brain imaging of dystonia cohorts, and to identify commonly identified pathways, networks or regions that are implicated in pathogenesis. METHODS: Structural magnetic resonance imaging studies of idiopathic and genetic forms of dystonia were systematically reviewed. Adhering to strict inclusion and exclusion criteria, PubMed and Embase databases were searched up to January 2022, with studies reviewed for methodological quality and key findings. RESULTS: Seventy-seven studies were included, involving 1945 participants. The majority of studies employed diffusion tensor imaging (DTI) (n = 45) or volumetric analyses (n = 37), with frequently implicated areas of abnormality in the brainstem, cerebellum, basal ganglia and sensorimotor cortex and their interconnecting white matter pathways. Genotypic and motor phenotypic variation emerged, for example fewer cerebello-thalamic tractography streamlines in genetic forms than idiopathic and higher grey matter volumes in task-specific than non-task-specific dystonias. DISCUSSION: Work to date suggests microstructural brain changes in those diagnosed with dystonia, although the underlying nature of these changes remains undetermined. Employment of techniques such as multiple diffusion weightings or multi-exponential relaxometry has the potential to enhance understanding of these differences.


Subject(s)
Dystonia , Dystonic Disorders , Brain/pathology , Diffusion Tensor Imaging , Dystonia/diagnostic imaging , Dystonic Disorders/diagnostic imaging , Humans , Iron , Magnetic Resonance Imaging/methods
11.
Neuroimage ; 260: 119423, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35809886

ABSTRACT

It is estimated that in the human brain, short association fibres (SAF) represent more than half of the total white matter volume and their involvement has been implicated in a range of neurological and psychiatric conditions. This population of fibres, however, remains relatively understudied in the neuroimaging literature. Some of the challenges pertinent to the mapping of SAF include their variable anatomical course and proximity to the cortical mantle, leading to partial volume effects and potentially affecting streamline trajectory estimation. This work considers the impact of seeding and filtering strategies and choice of scanner, acquisition, data resampling to propose a whole-brain, surface-based short (≤30-40 mm) SAF tractography approach. The framework is shown to produce longer streamlines with a predilection for connecting gyri as well as high cortical coverage. We further demonstrate that certain areas of subcortical white matter become disproportionally underrepresented in diffusion-weighted MRI data with lower angular and spatial resolution and weaker diffusion weighting; however, collecting data with stronger gradients than are usually available clinically has minimal impact, making our framework translatable to data collected on commonly available hardware. Finally, the tractograms are examined using voxel- and surface-based measures of consistency, demonstrating moderate reliability, low repeatability and high between-subject variability, urging caution when streamline count-based analyses of SAF are performed.


Subject(s)
Diffusion Tensor Imaging , White Matter , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , White Matter/diagnostic imaging
12.
J Neuroimaging ; 32(3): 480-492, 2022 05.
Article in English | MEDLINE | ID: mdl-35253956

ABSTRACT

BACKGROUND AND PURPOSE: To apply and evaluate an intensity-based interpolation technique, enabling segmentation of motion-affected neonatal brain MRI. METHODS: Moderate-late preterm infants were enrolled in a prospective cohort study (Brain Imaging in Moderate-late Preterm infants "BIMP-study") between August 2017 and November 2019. T2-weighted MRI was performed around term equivalent age on a 3T MRI. Scans without motion (n = 27 [24%], control group) and with moderate-severe motion (n = 33 [29%]) were included. Motion-affected slices were re-estimated using intensity-based shape-preserving cubic spline interpolation, and automatically segmented in eight structures. Quality of interpolation and segmentation was visually assessed for errors after interpolation. Reliability was tested using interpolated control group scans (18/54 axial slices). Structural similarity index (SSIM) was used to compare T2-weighted scans, and Sørensen-Dice was used to compare segmentation before and after interpolation. Finally, volumes of brain structures of the control group were used assessing sensitivity (absolute mean fraction difference) and bias (confidence interval of mean difference). RESULTS: Visually, segmentation of 25 scans (22%) with motion artifacts improved with interpolation, while segmentation of eight scans (7%) with adjacent motion-affected slices did not improve. Average SSIM was .895 and Sørensen-Dice coefficients ranged between .87 and .97. Absolute mean fraction difference was ≤0.17 for less than or equal to five interpolated slices. Confidence intervals revealed a small bias for cortical gray matter (0.14-3.07 cm3 ), cerebrospinal fluid (0.39-1.65 cm3 ), deep gray matter (0.74-1.01 cm3 ), and brainstem volumes (0.07-0.28 cm3 ) and a negative bias in white matter volumes (-4.47 to -1.65 cm3 ). CONCLUSION: According to qualitative and quantitative assessment, intensity-based interpolation reduced the percentage of discarded scans from 29% to 7%.


Subject(s)
Infant, Premature , Magnetic Resonance Imaging , Brain/diagnostic imaging , Child, Preschool , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging/methods , Neuroimaging , Prospective Studies , Reproducibility of Results
13.
Neuroimage ; 254: 118958, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35217204

ABSTRACT

Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.


Subject(s)
Connectome , Brain/diagnostic imaging , China , Connectome/methods , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans
14.
Neuroimage ; 249: 118830, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34965454

ABSTRACT

Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, B1 bias fields, and spatial normalization. The focus will be on "what's new" since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on "Mapping the Connectome" in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on "what's next" in dMRI preprocessing.


Subject(s)
Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Diffusion Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/standards , Diffusion Magnetic Resonance Imaging/trends , Humans , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Image Processing, Computer-Assisted/trends
15.
Hum Brain Mapp ; 43(4): 1196-1213, 2022 03.
Article in English | MEDLINE | ID: mdl-34921473

ABSTRACT

Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called "crossing fiber problem" has received tremendous attention and has continuously triggered the community to develop novel approaches for disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and continuing towards their final cortical or sub-cortical terminations. These so-called "bottleneck" regions contribute to the ill-posed nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We demonstrate that bottlenecks occur in greater than 50-70% of fixels in the white matter of the human brain. We find that all projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions traditionally considered "single fiber voxels" often contain multiple fiber populations. Together, this study shows that a majority of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle segmentation for studying the fiber pathways of the human brain.


Subject(s)
Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , White Matter/anatomy & histology , White Matter/diagnostic imaging , Adult , Humans , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging
16.
Magn Reson Med ; 87(5): 2512-2520, 2022 05.
Article in English | MEDLINE | ID: mdl-34932236

ABSTRACT

PURPOSE: The use of high-performance gradient systems (i.e., high gradient strength and/or high slew rate) for human MRI is limited by physiological effects (including the elicitation of magnetophosphenes and peripheral nerve stimulation (PNS)). These effects, in turn, depend on the interaction between time-varying magnetic fields and the body, and thus on the participant's position with respect to the scanner's isocenter. This study investigated the occurrence of magnetophosphenes and PNS when scanning participants on a high-gradient (300 mT/m) system, for different gradient amplitudes, ramp times, and participant positions. METHODS: Using a whole-body 300 mT/m gradient MRI system, a cohort of participants was scanned with the head, heart, and prostate at magnet isocenter and a train of trapezoidal bipolar gradient pulses, with ramp times from 0.88 to 4.20 ms and gradient amplitudes from 60 to 300 mT/m. Reports of magnetophosphenes and incidental reports of PNS were obtained. A questionnaire was used to record any additional subjective effects. RESULTS: Magnetophosphenes were strongly dependent on participant position in the scanner. 87% of participants reported the effect with the heart at isocenter, 33% with the head at isocenter, and only 7% with the prostate at isocenter. PNS was most widely reported by participants for the vertical gradient axis (67% of participants), and was the dominant physiological effect for ramp times below 2 ms. CONCLUSION: This study evaluates the probability of eliciting magnetophosphenes during whole-body imaging using an ultra-strong gradient MRI system. It provides empirical guidance on the use of high-performance gradient systems for whole-body human MRI.


Subject(s)
Human Body , Magnetic Resonance Imaging , Humans , Magnetic Fields , Magnetic Resonance Imaging/methods , Male , Probability
17.
Brain Sci ; 11(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34679342

ABSTRACT

Objectives: In this pilot study we investigated the effects of transcranial direct current stimulation (tDCS) on language recovery in the subacute stage of post-stroke aphasia using clinical parameters and diffusion imaging with constrained spherical deconvolution-based tractography. Methods: The study included 21 patients with subacute post-stroke aphasia. Patients were randomly classified into two groups with a ratio of 2:1 to receive real tDCS or sham tDCS as placebo control. Patients received 10 sessions (5/week) bi-hemispheric tDCS treatments over the left affected Broca's area (anodal electrode) and over the right unaffected Broca's area (cathodal stimulation). Aphasia score was assessed clinically using the language section of the Hemispheric Stroke Scale (HSS) before and after treatment sessions. Diffusion imaging and tractography were performed for seven patients of the real group, both before and after the 10th session. Dissection of language-related white matter tracts was achieved, and diffusion measures were extracted. A paired Student's t-test was used to compare the clinical recovery and diffusion measures of the dissected tracts both pre- and post- treatment. The partial correlation between changes in diffusion measures and the language improvements was calculated. Results: At baseline assessment, there were no significant differences between groups in demographic and clinical HSS language score. No significant clinical recovery in HSS was evident in the sham group. However, significant improvements in the different components of HSS were only observed in patients receiving real tDCS. Associated significant increase in the fractional anisotropy of the right uncinate fasciculus and a significant reduction in the mean diffusivity of the right frontal aslant tract were reported. A significant positive correlation was found between the changes in the right uncinate fasciculus and fluency improvement. Conclusions: Aphasia recovery after bi-hemispheric transcranial direct current stimulation was associated with contralesional right-sided white matter changes at the subacute stage. These changes probably reflect neuroplasticity that could contribute to the recovery. Both the right uncinate fasciculus and right frontal aslant tract seem to be involved in aphasia recovery.

18.
Neuroimage ; 242: 118451, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34358660

ABSTRACT

When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.


Subject(s)
Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Anisotropy , Humans , Image Processing, Computer-Assisted , Reproducibility of Results
19.
J Neuroimaging ; 31(6): 1082-1098, 2021 11.
Article in English | MEDLINE | ID: mdl-34128556

ABSTRACT

BACKGROUND AND PURPOSE: Diffusion MRI of the brain enables to quantify white matter fiber orientations noninvasively. Several approaches have been proposed to estimate such characteristics from diffusion MRI data with spherical deconvolution being one of the most widely used methods. Spherical deconvolution requires to define--or derive from the data--a response function, which is used to compute the fiber orientation distribution (FOD). Different characteristics of the response function are expected to affect the FOD computation and the subsequent fiber tracking. METHODS: In this work, we explored the effects of inaccuracies in the shape factors of the response function on the FOD characteristics. RESULTS: With simulations, we show that the apparent fiber density could be doubled in the presence of underestimated shape factors in the response functions, whereas the overestimation of the shape factor will cause more spurious peaks in the FOD, especially when the signal-to-noise ratio is below 15. Moreover, crossing fiber populations with a separation angle smaller than 60° were more sensitive to inaccuracies in the response function than fiber populations with more orthogonal separation angles. Results with in vivo data demonstrate angular deviations in the FODs and spurious peaks as a result of modified shape factors of the response function, while the reconstruction of the main parts of fiber bundles is well preserved. CONCLUSIONS: This work sheds light on how specific aspects of the response function shape can affect the estimated FODs, and highlights the importance of a proper calibration/definition of the response function.


Subject(s)
Diffusion Tensor Imaging , White Matter , Algorithms , Brain/diagnostic imaging , Calibration , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , White Matter/diagnostic imaging
20.
Neuroimage ; 236: 117967, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33845062

ABSTRACT

The anisotropy of brain white matter microstructure manifests itself in orientational-dependence of various MRI contrasts, and can result in significant quantification biases if ignored. Understanding the origins of this orientation-dependence could enhance the interpretation of MRI signal changes in development, ageing and disease and ultimately improve clinical diagnosis. Using a novel experimental setup, this work studies the contributions of the intra- and extra-axonal water to the orientation-dependence of one of the most clinically-studied parameters, apparent transverse relaxation T2. Specifically, a tiltable receive coil is interfaced with an ultra-strong gradient MRI scanner to acquire multidimensional MRI data with an unprecedented range of acquisition parameters. Using this setup, compartmental T2 can be disentangled based on differences in diffusional-anisotropy, and its orientation-dependence further elucidated by re-orienting the head with respect to the main magnetic field B→0. A dependence of (compartmental) T2 on the fibre orientation w.r.t. B→0 was observed, and further quantified using characteristic representations for susceptibility- and magic angle effects. Across white matter, anisotropy effects were dominated by the extra-axonal water signal, while the intra-axonal water signal decay varied less with fibre-orientation. Moreover, the results suggest that the stronger extra-axonal T2 orientation-dependence is dominated by magnetic susceptibility effects (presumably from the myelin sheath) while the weaker intra-axonal T2 orientation-dependence may be driven by a combination of microstructural effects. Even though the current design of the tiltable coil only offers a modest range of angles, the results demonstrate an overall effect of tilt and serve as a proof-of-concept motivating further hardware development to facilitate experiments that explore orientational anisotropy. These observations have the potential to lead to white matter microstructural models with increased compartmental sensitivity to disease, and can have direct consequences for longitudinal and group-wise T2- and diffusion-MRI data analysis, where the effect of head-orientation in the scanner is commonly ignored.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , White Matter/anatomy & histology , White Matter/diagnostic imaging , Adult , Diffusion Tensor Imaging/methods , Female , Humans , Image Processing, Computer-Assisted , Male , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...