Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chim Acta ; 547: 117449, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37331549

ABSTRACT

BACKGROUND AND AIMS: There are significant changes to the maternal inflammatory profile across pregnancy. Recent studies suggest that perturbations in maternal gut microbial and dietary-derived plasma metabolites over the course of pregnancy mediate inflammation through a complex interplay of immunomodulatory effects. Despite this body of evidence, there is currently no analytical method that is suitable for the simultaneous profiling of these metabolites within human plasma. MATERIALS AND METHODS: We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the high-throughput analysis of these metabolites in human plasma without derivatization. Plasma samples were processed using liquid-liquid extraction method with varying proportions of methyl tert-butyl ether, methanol, and water in a 3:10:2.5 ratio to reduce matrix effects. RESULTS: LC-MS/MS detection was sufficiently sensitive to quantify these gut microbial and dietary-derived metabolites at physiological concentrations and linear calibration curves with r2 > 0.99 were obtained. Recovery was consistent across concentration levels. Stability experiments confirmed that up to 160 samples could be analyzed within a single batch. The method was validated and applied to analyse maternal plasma during the first and third trimester and cord blood plasma of 5 mothers. CONCLUSION: This study validated a straightforward and sensitive LC-MS/MS method for the simultaneous quantitation of gut microbial and dietary-derived metabolites in human plasma within 9 minutes without prior sample derivatization.


Subject(s)
Fatty Acids , Tandem Mass Spectrometry , Female , Humans , Pregnancy , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Bile Acids and Salts , Keto Acids , Plasma , Chromatography, High Pressure Liquid/methods
2.
Environ Microbiol ; 23(12): 7710-7722, 2021 12.
Article in English | MEDLINE | ID: mdl-34309161

ABSTRACT

Exposure to a diverse microbial environment during pregnancy and early postnatal period is important in determining predisposition towards allergy. However, the effect of environmental microbiota exposure during preconception, pregnancy and postnatal life on development of allergy in the child has not been investigated so far. In the S-PRESTO (Singapore PREconception Study of long Term maternal and child Outcomes) cohort, we collected house dust during all three critical window periods and analysed microbial composition using 16S rRNA gene sequencing. At 6 and 18 months, the child was assessed for eczema by clinicians. In the eczema group, household environmental microbiota was characterized by presence of human-associated bacteria Actinomyces, Anaerococcus, Finegoldia, Micrococcus, Prevotella and Propionibacterium at all time points, suggesting their possible contributions to regulating host immunity and increasing the susceptibility to eczema. In the home environment of the control group, putative protective effect of an environmental microbe Planomicrobium (Planococcaceae family) was observed to be significantly higher than that in the eczema group. Network correlation analysis demonstrated inverse relationships between beneficial Planomicrobium and human-associated bacteria (Actinomyces, Anaerococcus, Finegoldia, Micrococcus, Prevotella and Propionibacterium). Exposure to natural environmental microbiota may be beneficial to modulate shed human-associated microbiota in an indoor environment.


Subject(s)
Eczema , Microbiota , Bacteria/genetics , Child , Cohort Studies , Female , Humans , Microbiota/genetics , Pregnancy , RNA, Ribosomal, 16S/genetics
3.
Int Arch Allergy Immunol ; 182(4): 265-276, 2021.
Article in English | MEDLINE | ID: mdl-33588407

ABSTRACT

There is emerging evidence that the respiratory microbiota influences airway health, and there has been intense research interest in its role in respiratory infections and allergic airway disorders. This review aims to summarize current knowledge of nasal microbiome and virome and their associations with childhood rhinitis and wheeze. The healthy infant nasal microbiome is dominated by Corynebacteriaceae and Staphylococcaceae. In contrast, infants who subsequently develop respiratory disorders are depleted of these microbes and are instead enriched with Proteobacteria spp. Although human rhinovirus and human respiratory syncytial virus are well-documented major viral pathogens that trigger rhinitis and wheezing disorders in infants, recent limited data indicate that bacteriophages may have a role in respiratory health. Future work investigating the interplay between commensal microbiota, virome, and host immunological responses is an important step toward understanding the dynamics of the nasal community in order to develop a strategical approach to combat these common childhood respiratory disorders.


Subject(s)
Microbiota , Respiratory Mucosa/microbiology , Respiratory Sounds/etiology , Rhinitis/epidemiology , Rhinitis/etiology , Virome , Adolescent , Age Factors , Child , Child, Preschool , Disease Susceptibility , Humans , Infant , Infant, Newborn , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology
4.
Gut Microbes ; 12(1): 1-22, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33023370

ABSTRACT

Evidence is accumulating that the establishment of the gut microbiome in early life influences the development of atopic eczema. In this longitudinal study, we used integrated multi-omics analyses to infer functional mechanisms by which the microbiome modulates atopic eczema risk. We measured the functionality of the gut microbiome and metabolome of 63 infants between ages 3 weeks and 12 months with well-defined eczema cases and controls in a sub-cohort from the Growing Up in Singapore Toward healthy Outcomes (GUSTO) mother-offspring cohort. At 3 weeks, the microbiome and metabolome of allergen-sensitized atopic eczema infants were characterized by an enrichment of Escherichia coli and Klebsiella pneumoniae, associated with increased stool D-glucose concentration and increased gene expression of associated virulence factors. A delayed colonization by beneficial Bacteroides fragilis and subsequent delayed accumulation of butyrate and propionate producers after 3 months was also observed. Here, we describe an aberrant developmental trajectory of the gut microbiome and stool metabolome in allergen sensitized atopic eczema infants. The infographic describes an impaired developmental trajectory of the gut microbiome and metabolome in allergen-sensitized atopic eczema (AE) infants and infer its contribution in modulating allergy risk in the Singaporean mother-offspring GUSTO cohort. The key microbial signature of AE is characterized by (1) an enrichment of Escherichia coli and Klebsiella pneumoniae which are associated with accumulation of pre-glycolysis intermediates (D-glucose) via the trehalose metabolic pathway, increased gene expression of associated virulence factors (invasin, adhesin, flagellin and lipopolysaccharides) by utilizing ATP from oxidative phosphorylation and delayed production of butyrate and propionate, (2) depletion of Bacteroides fragilis which resulted in lower expression of immunostimulatory bacterial cell envelope structure and folate (vitamin B9) biosynthesis pathway, and (3) accompanied depletion of bacterial groups with the ability to derive butyrate and propionate through direct or indirect pathways which collectively resulted in reduced glycolysis, butyrate and propionate biosynthesis.


Subject(s)
Bacteroidaceae/growth & development , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/microbiology , Enterobacteriaceae/growth & development , Gastrointestinal Microbiome , Metabolome , Allergens/immunology , Bacteroidaceae/metabolism , Butyrates/metabolism , Carbohydrate Metabolism , Enterobacteriaceae/metabolism , Enterobacteriaceae/pathogenicity , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Feces/chemistry , Feces/microbiology , Female , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Glucose/metabolism , Glycolysis , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Propionates/metabolism , Transcriptome , Virulence Factors/genetics
5.
J Allergy Clin Immunol ; 142(1): 86-95, 2018 07.
Article in English | MEDLINE | ID: mdl-29452199

ABSTRACT

BACKGROUND: Dynamic establishment of the nasal microbiota in early life influences local mucosal immune responses and susceptibility to childhood respiratory disorders. OBJECTIVE: The aim of this case-control study was to monitor, evaluate, and compare development of the nasal microbiota of infants with rhinitis and wheeze in the first 18 months of life with those of healthy control subjects. METHODS: Anterior nasal swabs of 122 subjects belonging to the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) birth cohort were collected longitudinally over 7 time points in the first 18 months of life. Nasal microbiota signatures were analyzed by using 16S rRNA multiplexed pair-end sequencing from 3 clinical groups: (1) patients with rhinitis alone (n = 28), (2) patients with rhinitis with concomitant wheeze (n = 34), and (3) healthy control subjects (n = 60). RESULTS: Maturation of the nasal microbiome followed distinctive patterns in infants from both rhinitis groups compared with control subjects. Bacterial diversity increased over the period of 18 months of life in control infants, whereas infants with rhinitis showed a decreasing trend (P < .05). An increase in abundance of the Oxalobacteraceae family (Proteobacteria phylum) and Aerococcaceae family (Firmicutes phylum) was associated with rhinitis and concomitant wheeze (adjusted P < .01), whereas the Corynebacteriaceae family (Actinobacteria phylum) and early colonization with the Staphylococcaceae family (Firmicutes phylum; 3 weeks until 9 months) were associated with control subjects (adjusted P < .05). The only difference between the rhinitis and control groups was a reduced abundance of the Corynebacteriaceae family (adjusted P < .05). Determinants of nasal microbiota succession included sex, mode of delivery, presence of siblings, and infant care attendance. CONCLUSION: Our results support the hypothesis that the nasal microbiome is involved in development of early-onset rhinitis and wheeze in infants.


Subject(s)
Microbiota , Nasal Mucosa/microbiology , Respiratory Sounds , Rhinitis/microbiology , Case-Control Studies , Female , Humans , Infant , Infant, Newborn , Male , Nasal Mucosa/immunology , Respiratory Sounds/immunology , Rhinitis/immunology , Singapore
SELECTION OF CITATIONS
SEARCH DETAIL
...