Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 33(1): 137-150.e5, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29290541

ABSTRACT

Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. We performed (epi)genomic profiling of 138 IMs from 148 cancer-free patients, recruited through a 10-year prospective study. Compared with GCs, IMs exhibit low mutational burdens, recurrent mutations in certain tumor suppressors (FBXW7) but not others (TP53, ARID1A), chromosome 8q amplification, and shortened telomeres. Sequencing identified more IM patients with active Helicobacter pylori infection compared with histopathology (11%-27%). Several IMs exhibited hypermethylation at DNA methylation valleys; however, IMs generally lack intragenic hypomethylation signatures of advanced malignancy. IM patients with shortened telomeres and chromosomal alterations were associated with subsequent dysplasia or GC; conversely patients exhibiting normal-like epigenomic patterns were associated with regression.


Subject(s)
Gastric Mucosa/pathology , Helicobacter Infections/genetics , Metaplasia/genetics , Precancerous Conditions/genetics , Stomach Neoplasms/etiology , Adult , Aged , DNA Methylation , Disease Progression , Epigenomics , Female , Gastric Mucosa/microbiology , Genomics , Helicobacter Infections/microbiology , Humans , Male , Metaplasia/microbiology , Middle Aged , Precancerous Conditions/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology
2.
Gut ; 64(5): 707-19, 2015 May.
Article in English | MEDLINE | ID: mdl-25053715

ABSTRACT

OBJECTIVE: Gastric cancer (GC) is a deadly malignancy for which new therapeutic strategies are needed. Three transcription factors, KLF5, GATA4 and GATA6, have been previously reported to exhibit genomic amplification in GC. We sought to validate these findings, investigate how these factors function to promote GC, and identify potential treatment strategies for GCs harbouring these amplifications. DESIGN: KLF5, GATA4 and GATA6 copy number and gene expression was examined in multiple GC cohorts. Chromatin immunoprecipitation with DNA sequencing was used to identify KLF5/GATA4/GATA6 genomic binding sites in GC cell lines, and integrated with transcriptomics to highlight direct target genes. Phenotypical assays were conducted to assess the function of these factors in GC cell lines and xenografts in nude mice. RESULTS: KLF5, GATA4 and GATA6 amplifications were confirmed in independent GC cohorts. Although factor amplifications occurred in distinct sets of GCs, they exhibited significant mRNA coexpression in primary GCs, consistent with KLF5/GATA4/GATA6 cross-regulation. Chromatin immunoprecipitation with DNA sequencing revealed a large number of genomic sites co-occupied by KLF5 and GATA4/GATA6, primarily located at gene promoters and exhibiting higher binding strengths. KLF5 physically interacted with GATA factors, supporting KLF5/GATA4/GATA6 cooperative regulation on co-occupied genes. Depletion and overexpression of these factors, singly or in combination, reduced and promoted cancer proliferation, respectively, in vitro and in vivo. Among the KLF5/GATA4/GATA6 direct target genes relevant for cancer development, one target gene, HNF4α, was also required for GC proliferation and could be targeted by the antidiabetic drug metformin, revealing a therapeutic opportunity for KLF5/GATA4/GATA6 amplified GCs. CONCLUSIONS: KLF5/GATA4/GATA6 may promote GC development by engaging in mutual crosstalk, collaborating to maintain a pro-oncogenic transcriptional regulatory network in GC cells.


Subject(s)
GATA4 Transcription Factor/genetics , GATA6 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic/genetics , Kruppel-Like Transcription Factors/genetics , Stomach Neoplasms/genetics , Animals , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , GATA4 Transcription Factor/biosynthesis , GATA6 Transcription Factor/biosynthesis , Gene Expression Profiling/methods , Gene Silencing , Genetic Predisposition to Disease , Heterografts , Humans , Kruppel-Like Transcription Factors/biosynthesis , Mice, Nude , Neoplasm Transplantation , Oncogenes/genetics , Promoter Regions, Genetic , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...