Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Nutr ; 16: 241-250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38362510

ABSTRACT

Net energy (NE) enables the prediction of more accurate feed energy values by taking into account the heat increment which is approximately 25% of apparent metabolizable energy (AME) in poultry. Nevertheless, application of NE in poultry industry has not been practiced widely. To predict the NE values of broiler diets, 23 diets were prepared by using 13 major ingredients (wheat, corn, paddy rice, broken rice, cassava pellets, full-fat soybean, soybean meal, canola meal, animal protein, rice bran, wheat bran, palm kernel meal and palm kernel oil). The diets were formulated in order to meet the birds' requirements and get a wide range of chemical compositions (on DM basis; 33.6% to 55.3% for starch; 20.8% to 28.4% for CP, 2.7% to 10.6% for ether extract [EE] and 7.0% to 17.2% for NDF), with low correlations between these nutrients and low correlations between the inclusion levels of ingredients allowing for the calculation of robust prediction equations of energy values of diets or ingredients. These diets were fed to Ross 308 broilers raised in 12 open-circuit respiratory chambers from 18 to 23 d of age (4 birds per cage) and growth performance, diet AME content and heat production were measured, and dietary NE values were calculated. The trial was conducted on a weekly basis with 12 diets measured each week (1 per chamber), 1 of the 23 diets (reference diet) being measured each week. Each diet was tested at least 8 times. In total, 235 energy balance data values were available for the final calculations. Growth performance, AME (15.3 MJ/kg DM on average) and AME/GE (79.4% on average) values were as expected. The NE/AME value averaged 76.6% and was negatively influenced by CP and NDF and positively by EE in connection with efficiencies of AME provided by CP, EE and starch for NE of 73%, 87% and 81%, respectively. The best prediction equation was: NE = (0.815 × AME) - (0.026 × CP) + (0.020 × EE) - (0.024 × NDF) with NE and AME as MJ/kg DM, and CP, EE and NDF as % of DM. The NE prediction equations from this study agree with other recently reported equations in poultry and are suitable for both ingredients and complete feeds.

2.
Anim Nutr ; 16: 62-72, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38292030

ABSTRACT

Different energy systems have been proposed for energy evaluation of feeds for domestic animals. The oldest and most commonly used systems take into account the fecal energy loss to obtain digestible energy (DE), and fecal, urinary and fermentation gases energy losses to calculate metabolizable energy (ME). In the case of ruminants and pigs, the net energy (NE) system, which takes into account the heat increment associated with the metabolic utilization of ME, has progressively replaced the DE and ME systems over the last 50 years. For poultry, apparent ME (AME) is used exclusively and NE is not yet used widely. The present paper considers some important methodological points for measuring NE in poultry feeds and summarizes the available knowledge on NE systems for poultry. NE prediction equations based on a common analysis of three recent studies representing a total of 50 complete and balanced diets fed to broilers are proposed; these equations including the AME content and easily available chemical indicators have been validated on another set of 30 diets. The equations are applicable to both ingredients and complete diets. They rely primarily on an accurate and reliable AME value which then represents the first limiting predictor of NE value. Our analysis indicates that NE would be a better predictor of broiler performance than AME and that the hierarchy between feeds is dependent on the energy system with a higher energy value for fat and a lower energy value for protein in an NE system. Practical considerations for implementing such an NE system from the commonly used AME or AMEn (AME adjusted for zero nitrogen balance) systems are presented. In conclusion, there is sufficient information to allow the implementation of the NE concept in order to improve the accuracy of feed formulation in poultry.

3.
Poult Sci ; 98(10): 4685-4693, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-30982064

ABSTRACT

Effects of dietary non-phytate phosphorus (nPP) restriction on growth and duodenal type IIb sodium-dependent phosphate cotransporter (NaPi-IIb) genes were observed. A total of 432 one-day old Cobb500 male broiler chickens in 36 cage pens were divided into 6 groups with each group containing 6 pens. Each group was treated with one of the diets containing 0.33, 0.37, 0.41, 0.45, 0.49, and 0.53% of nPP up to 14 D. During 15 to 31 D, birds were treated with one of the diets containing 0.23, 0.27, 0.31, 0.35, 0.39, and 0.43% of nPP. Level of Ca was kept the same across all treatments. Dietary nPP level influenced (P < 0.001) weight gain and feed intake in both growth phases, whereas effect on feed per gain ratio was seen only in the second phase. Toe ash, tibia ash, and tibia breaking strength responded to treatments (P < 0.01) at 14 D. Only tibia ash content was significantly improved (P < 0.001) at 31 D. Growth and bone parameters linearly improved with an increase in dietary nPP content (P < 0.05). Above dietary nPP 0.41% and 0.31% for first phase and second phase, respectively, no significant improvement was seen. Duodenal NaPi-IIb mRNA overexpressed with a decrease in dietary nPP in both phases (P < 0.05). Relative expression of NaPi-IIb in lowest nPP group were 2.2 folds higher in the first phase and 3.6 folds higher in the second phase compared to respective highest nPP groups of each phase. No significant change in NaPi-IIb expression was seen above 0.37% of dietary nPP for 14 D and 0.31% of dietary nPP for 31 D. Dietary requirements of nPP 0.41% for 0 to 14 D and 0.31% for 15 to 31 D were adequate for optimal growth and bone parameters. This study fills the gap in understanding of intestinal NaPi-IIb expression in response to dietary nPP restriction in broilers older than 21 D of age.


Subject(s)
Avian Proteins/genetics , Chickens/growth & development , Chickens/genetics , Gene Expression , Phosphorus, Dietary/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Animal Feed/analysis , Animal Feed/classification , Animals , Avian Proteins/metabolism , Chickens/metabolism , Diet/veterinary , Dose-Response Relationship, Drug , Male , Phosphorus, Dietary/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , Random Allocation , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...