Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 29(3): 697-713.e8, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618637

ABSTRACT

Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid ß plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.


Subject(s)
DNA-Binding Proteins/metabolism , Microglia/metabolism , Proto-Oncogene Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/veterinary , Amyloid/metabolism , Animals , Brain/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Dioxygenases , Enhancer Elements, Genetic , Humans , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA Interference , RNA, Small Interfering/metabolism , Rats , Transcription Factor RelA/metabolism , Transcription, Genetic/drug effects
2.
Front Cell Neurosci ; 12: 440, 2018.
Article in English | MEDLINE | ID: mdl-30519161

ABSTRACT

The oral antidiabetic drug metformin is known to exhibit anti-inflammatory properties through activation of AMP kinase, thus protecting various brain tissues as cortical neurons, for example. However, the effect of metformin on the substantia nigra (SN), the main structure affected in Parkinson's disease (PD), has not yet been studied in depth. Inflammation is a key feature of PD and it may play a central role in the neurodegeneration that takes place in this disorder. The aim of this work was to determine the effect of metformin on the microglial activation of the SN of rats using the animal model of PD based on the injection of the pro-inflammogen lipopolysaccharide (LPS). In vivo and in vitro experiments were conducted to study the activation of microglia at both the cellular and molecular levels. Our results indicate that metformin overall inhibits microglia activation measured by OX-6 (MHCII marker), IKKß (pro-inflammatory marker) and arginase (anti-inflammatory marker) immunoreactivity. In addition, qPCR experiments reveal that metformin treatment minimizes the expression levels of several pro- and anti-inflammatory cytokines. Mechanistically, the drug decreases the phosphorylated forms of mitogen-activated protein kinases (MAPKs) as well as ROS generation through the inhibition of the NADPH oxidase enzyme. However, metformin treatment fails to protect the dopaminergic neurons of SN in response to intranigral LPS. These findings suggest that metformin could have both beneficial and harmful pharmacological effects and raise the question about the potential use of metformin for the prevention and treatment of PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...