Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 274(19): 12955-8, 1999 May 07.
Article in English | MEDLINE | ID: mdl-10224040

ABSTRACT

The nematode CED-4 protein and its human homolog Apaf-1 play a central role in apoptosis by functioning as direct activators of death-inducing caspases. A novel human CED-4/Apaf-1 family member called CARD4 was identified that has a domain structure strikingly similar to the cytoplasmic, receptor-like proteins that mediate disease resistance in plants. CARD4 interacted with the serine-threonine kinase RICK and potently induced NF-kappaB activity through TRAF-6 and NIK signaling molecules. In addition, coexpression of CARD4 augmented caspase-9-induced apoptosis. Thus, CARD4 coordinates downstream NF-kappaB and apoptotic signaling pathways and may be a component of the host innate immune response.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis , Caenorhabditis elegans Proteins , Calcium-Binding Proteins/metabolism , Carrier Proteins/metabolism , Helminth Proteins/metabolism , NF-kappa B/metabolism , Proteins/metabolism , Amino Acid Sequence , Apoptotic Protease-Activating Factor 1 , Base Sequence , Carrier Proteins/genetics , DNA, Complementary , Humans , Molecular Sequence Data , Nod1 Signaling Adaptor Protein , Sequence Homology, Amino Acid , Signal Transduction
2.
Proc Natl Acad Sci U S A ; 94(17): 9314-9, 1997 Aug 19.
Article in English | MEDLINE | ID: mdl-9256479

ABSTRACT

Vascular endothelium is an important transducer and integrator of both humoral and biomechanical stimuli within the cardiovascular system. Utilizing a differential display approach, we have identified two genes, Smad6 and Smad7, encoding members of the MAD-related family of molecules, selectively induced in cultured human vascular endothelial cells by steady laminar shear stress, a physiologic fluid mechanical stimulus. MAD-related proteins are a recently identified family of intracellular proteins that are thought to be essential components in the signaling pathways of the serine/threonine kinase receptors of the transforming growth factor beta superfamily. Smad6 and Smad7 possess unique structural features (compared with previously described MADs), and they can physically interact with each other, and, in the case of Smad6, with other known human MAD species, in endothelial cells. Transient expression of Smad6 or Smad7 in vascular endothelial cells inhibits the activation of a transfected reporter gene in response to both TGF-beta and fluid mechanical stimulation. Both Smad6 and Smad7 exhibit a selective pattern of expression in human vascular endothelium in vivo as detected by immunohistochemistry and in situ hybridization. Thus, Smad6 and Smad7 constitute a novel class of MAD-related proteins, termed vascular MADs, that are induced by fluid mechanical forces and can modulate gene expression in response to both humoral and biomechanical stimulation in vascular endothelium.


Subject(s)
DNA-Binding Proteins/genetics , Endothelium, Vascular/physiology , Gene Expression , Trans-Activators , Amino Acid Sequence , Cells, Cultured , DNA-Binding Proteins/biosynthesis , Humans , Immunohistochemistry , In Situ Hybridization , Molecular Sequence Data , Sequence Alignment , Signal Transduction/genetics , Smad6 Protein , Smad7 Protein , Stress, Mechanical
3.
Diabetes ; 46(6): 1081-6, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9166684

ABSTRACT

Maturity-onset diabetes of the young 3 (MODY3) is a type of NIDDM caused by mutations in the transcription factor hepatocyte nuclear factor-1alpha (HNF-1alpha) located on chromosome 12q. We have identified four novel HNF-1alpha missense mutations in MODY3 families. In four additional and unrelated families, we observed an identical insertion mutation that had occurred in a polycytidine tract in exon 4. Among those families, one exhibited a de novo mutation at this location. We propose that instability of this sequence represents a general mutational mechanism in MODY3. We observed no HNF-1alpha mutations among 86 unrelated late-onset diabetic patients with relative insulin deficiency. Hence mutations in this gene appear to be most strongly associated with early-onset diabetes.


Subject(s)
Chromosomes, Human, Pair 12/genetics , DNA-Binding Proteins , Diabetes Mellitus, Type 2/genetics , Mutation/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , DNA Mutational Analysis , DNA Primers/chemistry , Family , Genetic Linkage , Haplotypes , Hepatocyte Nuclear Factor 1 , Hepatocyte Nuclear Factor 1-alpha , Hepatocyte Nuclear Factor 1-beta , Humans , Pedigree , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational
4.
Cell ; 85(2): 281-90, 1996 Apr 19.
Article in English | MEDLINE | ID: mdl-8612280

ABSTRACT

The mutated gene responsible for the tubby obesity phenotype has been identified by positional cloning. A single base change within a splice donor site results in the incorrect retention of a single intron in the mature tub mRNA transcript. The consequence of this mutation is the substitution of the carboxy-terminal 44 amino acids with 24 intron-encoded amino acids. The normal transcript appears to be abundantly expressed in the hypothalamus, a region of the brain involved in body weight regulation. Variation in the relative abundance of alternative splice products is observed between inbred mouse strains and appears to correlate with an intron length polymorphism. This allele of tub is a candidate for a previously reported diet-induced obesity quantitative trait locus on mouse chromosome 7.


Subject(s)
Obesity/genetics , Proteins/chemistry , Proteins/genetics , Adaptor Proteins, Signal Transducing , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Base Sequence , Brain Chemistry/physiology , Chromosome Mapping , Cloning, Molecular , Exons/genetics , Gene Expression/physiology , Genetic Variation , In Situ Hybridization , Insulin Resistance/genetics , Mice , Mice, Obese , Molecular Sequence Data , Mutation/genetics , Polymerase Chain Reaction/methods , RNA, Messenger/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...