Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Cell Mater ; 43: 277-292, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35730482

ABSTRACT

Biochemical and biophysical factors need consideration when modelling in vivo cellular behaviour using in vitro cell culture systems. One underappreciated factor is the high concentration of macromolecules present in vivo, which is typically not simulated under standard cell culture conditions. This disparity is especially relevant when studying biochemical processes that govern extracellular matrix (ECM) deposition, which may be altered due to dilution of secreted macromolecules by the relatively large volumes of culture medium required for cell maintenance in vitro. Macromolecular crowding (MMC) utilises the addition of inert macromolecules to cell culture medium to mimic such high concentration environments found in vivo. The present study induced MMC using the sucrose polymer Ficoll and examined whether fibrillin-1 deposition by human lung fibroblasts could be augmented. Fibrillin-1 forms extracellular microfibrils, which are versatile scaffolds required for elastic fibre formation, deposition of other ECM proteins and growth factor regulation. Pathogenic variants in the fibrillin-1 gene (FBN1) cause Marfan syndrome, where ECM deposition of fibrillin-1 can be compromised. Using immunocytochemistry, significantly enhanced fibrillin-1 deposition was observed when lung fibroblasts were cultured under MMC conditions. MMC also augmented fibrillin-1 deposition in Marfan syndrome patient-derived skin fibroblasts in a cell line- and likely FBN1 variant-specific manner. The ability of MMC to increase fibrillin-1 deposition suggested potential applications for tissue-engineering approaches, e.g. to generate tendon or vascular tissues, where fibrillin-1 microfibrils and elastic fibres are key determinants of their biomechanical properties. Moreover, it suggested the potency of MMC to better mimic in vivo ECM environments in cell culture studies.


Subject(s)
Marfan Syndrome , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Fibrillin-1/analysis , Fibrillin-1/genetics , Fibrillin-1/metabolism , Humans , Marfan Syndrome/metabolism , Marfan Syndrome/pathology , Microfibrils/genetics , Microfibrils/metabolism , Microfibrils/pathology
2.
Nihon Arukoru Yakubutsu Igakkai Zasshi ; 38(2): 83-102, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12784660

ABSTRACT

Borkenstein et al. (1974) study indicated that drivers with BACs of 0.05 to 0.09 per cent were twice as likely to crash as drivers with a zero BAC. Drivers with BACs from 0.10 to 0.14 per cent were ten times as likely to have a fatal crash in 1964. There have been numerous efforts during the history of motorized countries to control the consumption of alcohol and the problems associated with it through legislative mandate, it was not until the 1970s that acceptance of legal BAC (Blood Alcohol Concentration) limits laws became widespread. In particular, as more and more people drive automobiles, the number of traffic accidents involving drunken drivers has soared, and many of these are known to be related to the consumption of alcohol. Thus, legislators find themselves under increasing pressure to find a reasonable and fair solution to the question of alcohol impaired driving, as the scientific evidence about alcohol consumption level and psycho motor functions impairment came to clear. A landmark event in the development of policies regarding impaired driving was the establishment of the fact that consumption of alcohol does, in fact, increase the probability of traffic crashes. Legal limit laws specify a maximum permissible BAC limit for drivers. Currently, a BAC laws range from zero tolerance and 0.02 to 0.10% constitutes prima facie evidence in most countries for 'Driving under Influence of Alcohol.' This latter standard is too permissive, as driving skills deteriorate and crash involvement risk increases beginning at 0.02%. There are consequences attached to setting a BAC limit so high that a 72 kg man can drink five bottles of beer and still be under legal limit. In this sense high legal BAC limit may influence people to make bad estimates of their relative risk of injury or death while driving. Provided there is adequate political will, millions of lives could be saved in the coming years. This review is an attempt to examine in detail the available information about legal BAC limit laws, and issue of considerable interest to both policy makers and the public.


Subject(s)
Accidents, Traffic/prevention & control , Alcohol Drinking/legislation & jurisprudence , Automobile Driving/legislation & jurisprudence , Public Policy , Accidents, Traffic/statistics & numerical data , Age Factors , Alcoholic Intoxication , Female , Global Health , Humans , Male , Probability , Psychomotor Performance , Safety , Sleep Deprivation
SELECTION OF CITATIONS
SEARCH DETAIL
...