Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e17840, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37456054

ABSTRACT

The present work aims to interpret the mass and heat transferal flow through Darcy Forchheimer porous medium involving, simultaneously, microorganisms and nanoparticles. The involvement of gyrotactic microorganisms in the flow of nanoparticles reinforces the thermal characteristics of several energy systems. The amalgamation of microorganisms (microbes) in the nanofluids not only enhances the thermal properties of the fluid but it also causes the stability in the flow. Some other prominent effects such as chemical reaction and heat generation have also been taken into account. The reduced form of the governing model equations is further simplified in order to obtain the algebraic system of equations. Afterward, the approximate solution is obtained by developing an algorithm in the MATLAB software. To check the validity and efficiency of code, we have correlated our numerical outcomes with the previously accomplished ones. The outcomes are explained via the tabular and graphical representations. The flow of nanofluids will be more stable if it involves the motile microorganisms. Another example of the utilization of microorganisms is the microbial-enhanced oil recovery. In order to maintain the variation in the oil bearing layers, the microorganisms along with other nutrients can be incorporated. A significant enhancement is noticed in temperature in case of an increase in the values of heat generation and thermophoresis parameter.

2.
Nanomaterials (Basel) ; 11(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068022

ABSTRACT

A numerical study is presented for the thermo-free convection inside a cavity with vertical corrugated walls consisting of a solid part of fixed thickness, a part of porous media filled with a nanofluid, and a third part filled with a nanofluid. Alumina nanoparticle water-based nanofluid is used as a working fluid. The cavity's wavy vertical surfaces are subjected to various temperature values, hot to the left and cold to the right. In order to generate a free-convective flow, the horizontal walls are kept adiabatic. For the porous medium, the Local Thermal Non-Equilibrium (LTNE) model is used. The method of solving the problem's governing equations is the Galerkin weighted residual finite elements method. The results report the impact of the active parameters on the thermo-free convective flow and heat transfer features. The obtained results show that the high Darcy number and the porous media's low modified thermal conductivity ratio have important roles for the local thermal non-equilibrium effects. The heat transfer rates through the nanofluid and solid phases are found to be better for high values of the undulation amplitude, the Darcy number, and the volume fraction of the nanofluid, while a limit in the increase of heat transfer rate through the solid phase with the modified thermal ratio is found, particularly for high values of porosity. Furthermore, as the porosity rises, the nanofluid and solid phases' heat transfer rates decline for low Darcy numbers and increase for high Darcy numbers.

3.
J Adv Res ; 30: 63-74, 2021 May.
Article in English | MEDLINE | ID: mdl-34026287

ABSTRACT

INTRODUCTION: Mixed convection flow and heat transfer within various cavities including lid-driven walls has many engineering applications. Investigation of such a problem is important in enhancing the performance of the cooling of electric, electronic and nuclear devices and controlling the fluid flow and heat exchange of the solar thermal operations and thermal storage. OBJECTIVES: The main aim of this fundamental investigation is to examine the influence of a two-phase hybrid nanofluid approach on mixed convection characteristics including the consequences of varying Richardson number, number of oscillations, nanoparticle volume fraction, and dimensionless length and dimensionless position of the solid obstacle. METHODS: The migration of composite hybrid nanoparticles due to the nano-scale forces of the Brownian motion and thermophoresis was taken into account. There is an inner block near the middle of the enclosure, which contributes toward the flow, heat, and mass transfer. The top lid cover wall of the enclosure is allowed to move which induces a mixed convection flow. The impact of the migration of hybrid nanoparticles with regard to heat transfer is also conveyed in the conservation of energy. The governing equations are molded into the non-dimensional pattern and then explained using the finite element technique. The effect of various non-dimensional parameters such as the volume fraction of nanoparticles, the wave number of walls, and the Richardson number on the heat transfer and the concentration distribution of nanoparticles are examined. Various case studies for Al2O3-Cu/water hybrid nanofluids are performed. RESULTS: The results reveal that the temperature gradient could induce a notable concentration variation in the enclosure. CONCLUSION: The location of the solid block and undulation of surfaces are valuable in the control of the heat transfer and the concentration distribution of the composite nanoparticles.

4.
Entropy (Basel) ; 22(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-33286378

ABSTRACT

The current study investigates the 2D entropy production and the mixed convection inside a wavy-walled chamber containing a rotating cylinder and a heat source. The heat source of finite-length h is placed in the middle of the left vertical surface in which its temperature is fixed at T h . The temperature of the right vertical surface, however, is maintained at lower temperature T c . The remaining parts of the left surface and the wavy horizontal surfaces are perfectly insulated. The governing equations and the complex boundary conditions are non-dimensionalized and solved using the weighted residual finite element method, in particular, the Galerkin method. Various active parameters are considered, i.e., Rayleigh number R a = 10 3 and 10 5 , number of oscillations: 1 ≤ N ≤ 4 , angular rotational velocity: - 1000 ≤ Ω ≤ 1000 , and heat source length: 0 . 2 ≤ H ≤ 0 . 8 . A mesh independence test is carried out and the result is validated against the benchmark solution. Results such as stream function, isotherms and entropy lines are plotted and we found that fluid flow can be controlled by manipulating the rotating velocity of the circular cylinder. For all the considered oscillation numbers, the Bejan number is the highest for the case involving a nearly stationary inner cylinder.

5.
Sci Rep ; 10(1): 18048, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33093608

ABSTRACT

This study investigates thermal natural convective heat transfer in a nanofluid filled-non-Darcian porous and wavy-walled domain under the local thermal non-equilibrium condition. The considered cavity has corrugated and cold vertical walls and insulated horizontal walls except the heated part positioned at the bottom wall. The transport equations in their non-dimensional model are numerically solved based on the Galerkin finite-element discretization technique. The dimensionless governing parameters of the present work are the nanoparticle in volume concentration, the Darcy number, number of undulations, modified heat conductivity ratio, dimensionless heated part length, and location. Comparisons with other published theoretical and experimental results show good agreement with the present outcomes. The findings indicate that the heater length, its position, and the waves number on the side vertical walls as well as the nanoparticles concentration can be the control parameters for free convective motion and heat transport within the wavy cavity.

SELECTION OF CITATIONS
SEARCH DETAIL
...