Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(4): e0136422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35913161

ABSTRACT

Fecal communities transplanted into individuals can eliminate recurrent Clostridioides difficile infection (CDI) with high efficacy. However, this treatment is only used once CDI becomes resistant to antibiotics or has recurred multiple times. We sought to investigate whether a fecal community transplant (FCT) pretreatment could be used to prevent CDI altogether. We treated male C57BL/6 mice with either clindamycin, cefoperazone, or streptomycin and then inoculated them with the microbial community from untreated mice before challenge with C. difficile. We measured colonization and sequenced the V4 region of the 16S rRNA gene to understand the dynamics of the murine fecal community in response to the FCT and C. difficile challenge. Clindamycin-treated mice became colonized with C. difficile but cleared it naturally and did not benefit from the FCT. Cefoperazone-treated mice became colonized by C. difficile, but the FCT enabled clearance of C. difficile. In streptomycin-treated mice, the FCT was able to prevent C. difficile from colonizing. We then diluted the FCT and repeated the experiments. Cefoperazone-treated mice no longer cleared C. difficile. However, streptomycin-treated mice colonized with 1:102 dilutions resisted C. difficile colonization. Streptomycin-treated mice that received an FCT diluted 1:103 became colonized with C. difficile but later cleared the infection. In streptomycin-treated mice, inhibition of C. difficile was associated with increased relative abundance of a group of bacteria related to Porphyromonadaceae and Lachnospiraceae. These data demonstrate that C. difficile colonization resistance can be restored to a susceptible community with an FCT as long as it complements the missing populations. IMPORTANCE Antibiotic use, ubiquitous with the health care environment, is a major risk factor for Clostridioides difficile infection (CDI), the most common nosocomial infection. When C. difficile becomes resistant to antibiotics, a fecal microbiota transplant from a healthy individual can effectively restore the gut bacterial community and eliminate the infection. While this relationship between the gut bacteria and CDI is well established, there are no therapies to treat a perturbed gut community to prevent CDI. This study explored the potential of restoring colonization resistance to antibiotic-induced susceptible gut communities. We described the effect that gut bacterial community variation has on the effectiveness of a fecal community transplant for inhibiting CDI. These data demonstrated that communities susceptible to CDI can be supplemented with fecal communities but that the effectiveness depended on the structure of the community following the perturbation. Thus, a reduced bacterial community may be able to recover colonization resistance in patients treated with antibiotics.


Subject(s)
Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Cefoperazone/pharmacology , Clindamycin/pharmacology , Clindamycin/therapeutic use , Clostridioides , Clostridium Infections/microbiology , Clostridium Infections/prevention & control , Disease Susceptibility , Fecal Microbiota Transplantation , Feces/microbiology , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Streptomycin/pharmacology , Streptomycin/therapeutic use
2.
mSphere ; 6(5): e0062921, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34585964

ABSTRACT

Antibiotics are a major risk factor for Clostridioides difficile infections (CDIs) because of their impact on the microbiota. However, nonantibiotic medications such as the ubiquitous osmotic laxative polyethylene glycol 3350 (PEG 3350) also alter the microbiota. Clinicians also hypothesize that PEG helps clear C. difficile. But whether PEG impacts CDI susceptibility and clearance is unclear. To examine how PEG impacts susceptibility, we treated C57BL/6 mice with 5-day and 1-day doses of 15% PEG in the drinking water and then challenged the mice with C. difficile 630. We used clindamycin-treated mice as a control because they consistently clear C. difficile within 10 days postchallenge. PEG treatment alone was sufficient to render mice susceptible, and 5-day PEG-treated mice remained colonized for up to 30 days postchallenge. In contrast, 1-day PEG-treated mice were transiently colonized, clearing C. difficile within 7 days postchallenge. To examine how PEG treatment impacts clearance, we administered a 1-day PEG treatment to clindamycin-treated, C. difficile-challenged mice. Administering PEG to mice after C. difficile challenge prolonged colonization up to 30 days postchallenge. When we trained a random forest model with community data from 5 days postchallenge, we were able to predict which mice would exhibit prolonged colonization (area under the receiver operating characteristic curve [AUROC] = 0.90). Examining the dynamics of these bacterial populations during the postchallenge period revealed patterns in the relative abundances of Bacteroides, Enterobacteriaceae, Porphyromonadaceae, Lachnospiraceae, and Akkermansia that were associated with prolonged C. difficile colonization in PEG-treated mice. Thus, the osmotic laxative PEG rendered mice susceptible to C. difficile colonization and hindered clearance. IMPORTANCE Diarrheal samples from patients taking laxatives are typically rejected for Clostridioides difficile testing. However, there are similarities between the bacterial communities from people with diarrhea and those with C. difficile infections (CDIs), including lower diversity than the communities from healthy patients. This observation led us to hypothesize that diarrhea may be an indicator of C. difficile susceptibility. We explored how osmotic laxatives disrupt the microbiota's colonization resistance to C. difficile by administering a laxative to mice either before or after C. difficile challenge. Our findings suggest that osmotic laxatives disrupt colonization resistance to C. difficile and prevent clearance among mice already colonized with C. difficile. Considering that most hospitals recommend not performing C. difficile testing on patients taking laxatives, and laxatives are prescribed prior to administering fecal microbiota transplants via colonoscopy to patients with recurrent CDIs, further studies are needed to evaluate if laxatives impact microbiota colonization resistance in humans.


Subject(s)
Clostridioides difficile/drug effects , Clostridioides difficile/physiology , Clostridium Infections/drug therapy , Gastrointestinal Microbiome/drug effects , Laxatives/therapeutic use , Animals , Anti-Bacterial Agents/therapeutic use , Clindamycin/therapeutic use , Clostridium Infections/microbiology , Clostridium Infections/prevention & control , Disease Susceptibility , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Mice , Mice, Inbred C57BL , Polyethylene Glycols/therapeutic use , RNA, Ribosomal, 16S/analysis
3.
J Vet Diagn Invest ; 31(3): 426-433, 2019 May.
Article in English | MEDLINE | ID: mdl-30943877

ABSTRACT

Urinalysis is a rapid, simple, inexpensive, and reliable test that documents urine abnormalities reflecting various types of renal, hormonal, or metabolic diseases. Urinalysis could assist proper monitoring of the health of dolphins under human care; however, normal baseline values for dolphin urinalysis have not been reported, to our knowledge. We sampled urine from 193 common bottlenose dolphins ( Tursiops truncatus), living under human care in 24 Caribbean dolphinariums, by voluntary free-catch and analyzed the urine for chemical and microscopic variables using multi-agent dry reagent chemistry dipstick test strips, dedicated pH reagent strips, and unstained sediment slides. Most urine was clear, pale yellow to dark yellow, and had a fishy odor. Dipstick glucose, bilirubin, ketones, and nitrites were negative in all dolphins. The urine pH was acidic ( x¯ ± SD; 5.88 ± 0.58) and specific gravity (SG) was 1.035 ± 0.008. Most animals had 0-2 red blood cells and white blood cells per 40× field, and were negative for proteins. On microscopic sediment, 42.7% of samples had few-to-many squamous epithelial cells; hyaline and epithelial casts were observed only rarely. Crystals were observed in 36.6% of the samples; most were calcium oxalate dihydrate (48.2%) and amorphous urates (42.4%). The values obtained in our study can be used as a reference for health monitoring of dolphins in dolphinariums, and to monitor renal conditions and function in dolphins being rehabilitated or under human care.


Subject(s)
Bottle-Nosed Dolphin/urine , Urinalysis/veterinary , Animals , Caribbean Region , Humans , Reagent Strips , Specific Gravity , Urinalysis/instrumentation , Urinalysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...