Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 113(4): 839-49, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22983616

ABSTRACT

Traditional continuous aerobic exercise training attenuates age-related increases of arterial stiffness, however, training studies have not determined whether metabolic stress impacts these favourable effects. Twenty untrained healthy participants (n = 11 heavy metabolic stress interval training, n = 9 moderate metabolic stress interval training) completed 6 weeks of moderate or heavy intensity interval training matched for total work and exercise duration. Carotid artery stiffness, blood pressure contour analysis, and linear and non-linear heart rate variability were assessed before and following training. Overall, carotid arterial stiffness was reduced (p < 0.01), but metabolic stress-specific alterations were not apparent. There was a trend for increased absolute high-frequency (HF) power (p = 0.10) whereas both absolute low-frequency (LF) power (p = 0.05) and overall power (p = 0.02) were increased to a similar degree following both training programmes. Non-linear heart rate dynamics such as detrended fluctuation analysis [Formula: see text] also improved (p > 0.05). This study demonstrates the effectiveness of interval training at improving arterial stiffness and autonomic function, however, the metabolic stress was not a mediator of this effect. In addition, these changes were also independent of improvements in aerobic capacity, which were only induced by training that involved a high metabolic stress.


Subject(s)
Cardiovascular Diseases/therapy , Carotid Arteries/physiopathology , Exercise , Heart Rate , Stress, Physiological , Vascular Stiffness , Adult , Analysis of Variance , Autonomic Nervous System/physiopathology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Carotid Arteries/diagnostic imaging , Carotid Intima-Media Thickness , Electrocardiography , England , Female , Humans , Linear Models , Male , Nonlinear Dynamics , Oxygen Consumption , Predictive Value of Tests , Pulse Wave Analysis , Time Factors , Treatment Outcome , Young Adult
2.
Exp Physiol ; 97(3): 375-85, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22179420

ABSTRACT

Moderate-intensity endurance exercise training improves vascular endothelial vasomotor function; however, the impact of high-intensity exercise training has been equivocal. Thus, the effect of the physiological stress of the exercise remains poorly understood. Furthermore, enhanced vascular repair mediated by circulating progenitor cells may also be improved. To address whether the physiological stress of exercise training is an important factor contributing to these adaptations, 20 healthy participants trained for 6 weeks. Training involved either moderate (MSIT; n = 9) or heavy metabolic stress (HSIT; n = 11) interval exercise training programmes matched for total work and duration of exercise. Before and after training, flow-mediated dilatation, low-flow-mediated constriction and total vessel reactivity were measured at the brachial artery using Doppler ultrasound. Circulating progenitor cells (CD34(+), CD133(+) and CD309/KDR(+)) were measured by flow cytometry (means ± SD). Relative (MSIT pre- 5.5 ± 3.4 versus post-training 6.6 ± 2.5%; HSIT pre- 6.6 ± 4.1 versus post-training 7.0 ± 3.4%, P = 0.33) and normalized (P = 0.16) flow-mediated dilatation did not increase with either training programme. However, low-flow-mediated constriction was greater after training in both groups (MSIT pre- -0.5 ± 3.2 versus post-training -1.9 ± 3.1%; HSIT pre- -1.0 ± 1.7 versus post-training -2.9 ± 3.0%, P = 0.04) and contributed to greater total vessel reactivity (MSIT pre- 7.4 ± 3.3 versus post-training 10.1 ± 3.7%; HSIT pre- 10.9 ± 5.9 versus post-training 12.7 ± 6.2%, P = 0.01). Peak reactive hyperaemia and the area under the shear rate curve were not different between groups, either before or after training. Although circulating progenitor cell numbers increased following heavy-intensity interval exercise training, variability was great amongst participants [MSIT pre- 16 ± 18 versus post-training 14 ± 12 cells (ml whole blood)(-1); HSIT pre- 8 ± 6 versus post-training 19 ± 23 cells (ml whole blood)(-1), P = 0.50]. Overall, vasoconstrictor function may be augmented by moderate- and heavy-intensity interval exercise training in young adults. However, circulating progenitor cell numbers were not increased, suggesting that these cells are not likely to be upregulated as a result of training.


Subject(s)
Exercise/physiology , Physical Endurance/physiology , Physical Fitness/physiology , Stem Cells/cytology , Vasoconstriction/physiology , Vasomotor System/physiology , Adaptation, Physiological/physiology , Adult , Brachial Artery/diagnostic imaging , Brachial Artery/physiology , Cell Count , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Female , Humans , Hyperemia/physiopathology , Male , Regional Blood Flow/physiology , Stem Cells/physiology , Stress, Physiological/physiology , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...