Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(1): e17104, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273555

ABSTRACT

Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2 ) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m-2 year-1 ) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m-2 year-1 ) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2 , N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2 -nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.


Subject(s)
Carbon Dioxide , Grassland , Carbon Dioxide/analysis , Phosphorus , Plants , Poaceae , Nitrogen , Soil/chemistry , Calcium Carbonate
2.
Cryst Growth Des ; 23(10): 7217-7230, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37808905

ABSTRACT

We present an extensive exploration of the solid-form landscape of chlorpropamide (CPA) using a combined experimental-computational approach at the frontiers of both fields. We have obtained new conformational polymorphs of CPA, placing them into context with known forms using flexible-molecule crystal structure prediction. We highlight the formation of a new polymorph (ζ-CPA) via spray-drying experiments despite its notable metastability (14 kJ/mol) relative to the thermodynamic α-form, and we identify and resolve the ball-milled η-form isolated in 2019. Additionally, we employ impurity- and gel-assisted crystallization to control polymorphism and the formation of novel multicomponent forms. We, thus, demonstrate the power of this collaborative screening approach to observe, rationalize, and control the formation of new metastable forms.

3.
J Am Chem Soc ; 142(39): 16668-16680, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32897065

ABSTRACT

We combine state-of-the-art computational crystal structure prediction (CSP) techniques with a wide range of experimental crystallization methods to understand and explore crystal structure in pharmaceuticals and minimize the risk of unanticipated late-appearing polymorphs. Initially, we demonstrate the power of CSP to rationalize the difficulty in obtaining polymorphs of the well-known pharmaceutical isoniazid and show that CSP provides the structure of the recently obtained, but unsolved, Form III of this drug despite there being only a single resolved form for almost 70 years. More dramatically, our blind CSP study predicts a significant risk of polymorphism for the related iproniazid. Employing a wide variety of experimental techniques, including high-pressure experiments, we experimentally obtained the first three known nonsolvated crystal forms of iproniazid, all of which were successfully predicted in the CSP procedure. We demonstrate the power of CSP methods and free energy calculations to rationalize the observed elusiveness of the third form of iproniazid, the success of high-pressure experiments in obtaining it, and the ability of our synergistic computational-experimental approach to "de-risk" solid form landscapes.

4.
Angew Chem Int Ed Engl ; 57(45): 14906-14910, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30248221

ABSTRACT

Dispersion-corrected density-functional theory (DFT-D) methods have become the workhorse of many computational protocols for molecular crystal structure prediction due to their efficiency and convenience. However, certain limitations of DFT, such as delocalisation error, are often overlooked or are too expensive to remedy in solid-state applications. This error can lead to artificial stabilisation of charge transfer and, in this work, it is found to affect the correct identification of the protonation site in multicomponent acid-base crystals. As such, commonly used DFT-D methods cannot be applied with any reliability to the study of acid-base co-crystals or salts, while hybrid functionals remain too restrictive for routine use. This presents an impetus for the development of new functionals with reduced delocalisation error for solid-state applications; the structures studied herein constitute an excellent benchmark for this purpose.

5.
Cryst Growth Des ; 18(2): 892-904, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29445316

ABSTRACT

We present a periodic density functional theory study of the stability of 350 organic cocrystals relative to their pure single-component structures, the largest study of cocrystals yet performed with high-level computational methods. Our calculations demonstrate that cocrystals are on average 8 kJ mol-1 more stable than their constituent single-component structures and are very rarely (<5% of cases) less stable; cocrystallization is almost always a thermodynamically favorable process. We consider the variation in stability between different categories of systems-hydrogen-bonded, halogen-bonded, and weakly bound cocrystals-finding that, contrary to chemical intuition, the presence of hydrogen or halogen bond interactions is not necessarily a good predictor of stability. Finally, we investigate the correlation of the relative stability with simple chemical descriptors: changes in packing efficiency and hydrogen bond strength. We find some broad qualitative agreement with chemical intuition-more densely packed cocrystals with stronger hydrogen bonding tend to be more stable-but the relationship is weak, suggesting that such simple descriptors do not capture the complex balance of interactions driving cocrystallization. Our conclusions suggest that while cocrystallization is often a thermodynamically favorable process, it remains difficult to formulate general rules to guide synthesis, highlighting the continued importance of high-level computation in predicting and rationalizing such systems.

6.
Front Microbiol ; 9: 3269, 2018.
Article in English | MEDLINE | ID: mdl-30700982

ABSTRACT

Chlamydia is the most frequently reported sexually transmitted bacteria causing 2.9 million infections annually in the United States. Diagnosis, treatment, and sequelae of chlamydial disease cost billions of dollars each year in the United States alone. Considering that a heparin sulfate-like cell surface receptor is involved in Chlamydia infections, we reasoned that sulfated and sulfonated mimics of heparin sulfate would be useful in topical prophylactic prevention of Chlamydia. In this study, we tested a small, synthetic sulfated agent sulfated pentagalloyl glucoside (SPGG) and three synthetic sulfonated polymers PSS and SPS with average molecular weight in the range of 11 to 1000 kDa for inhibition against Chlamydia. Infection of HeLa cells with C. muridarum or C. trachomatis in the presence of increasing concentrations of SPGG or sulfonated polymers were quantified by immunofluorescence of Chlamydia inclusions. To determine whether in vitro pre-treatment of SPGG inhibits infection of C. muridarum, HeLa monolayers were incubated with SPGG-containing media, and then infected with Chlamydia. Our in vitro results show that SPGG pre-treatment inhibits Chlamydia infection in a dose-dependent manner. In addition, we further determined if SPGG treatment has an inhibitory effect during infection, therefore cell monolayers were infected with C. muridarum in the concurrent presence of SPGG. Our results show that SPGG inhibits C. muridarum infection with an IC50 at 10 µg/ml levels. We also tested the inhibitory effect of synthetic polymers PSS and SPS against Chlamydia and found inhibition of C. muridarum and C. trachomatis infections with IC50 ranging from 0.3 to 0.8 µg/ml. SPGG, PSS, and SPS inhibit formation of Chlamydia inclusions in a concentration-dependent manner. For evaluation of in vivo efficacy of the most effective agent in blocking C. muridarum, SPGG, we intravaginally pre-treated mice with SPGG before infection with C. muridarum. Cervical swabs were collected post-infection to quantify Chlamydia inclusions in vitro. Our in vivo data show that the SPGG-treated group has a statistically significant reduction of infection compared to the no-treatment control. Overall, our results show that SPGG could serve as a promising topical inhibitor for preventing Chlamydia infection.

7.
Phys Chem Chem Phys ; 14(21): 7739-43, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22398949

ABSTRACT

We show that the quality of density functional theory (DFT) predictions for the relative stabilities of polymorphs of crystalline para-diiodobenzene (PDIB) is dramatically improved through a simple two-body correction using wavefunction-based electronic structure theory. PDIB has two stable polymorphs under ambient conditions, and like Hongo et al. [J. Phys. Chem. Lett., 1, 1789 (2010)] we find that DFT makes wildly variable predictions of the relative stabilities, depending on the approximate functional used. The two-body corrected scheme, using Grimme's spin-scaled variant of second-order Møller-Plesset perturbation theory and any of the tested density functionals, predicts the α-polymorph to be more stable, consistent with experiment, and produces a relative stability that agrees with the benchmark quantum Monte-Carlo results of Hongo et al. within statistical uncertainty.

SELECTION OF CITATIONS
SEARCH DETAIL
...