Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 356(2): 647-55, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21295786

ABSTRACT

The effects of the addition of the polyelectrolyte, poly(ethyleneimine), PEI, on the adsorption of the mixed surfactants of sodium dodecylsulfate, SDS, and dodecyldimethylaminoacetate, dodecyl betaine, at the air-water interface have been investigated using neutron reflectivity and surface tension. In the absence of PEI the SDS and dodecyl betaine surfactants strongly interact and exhibit synergistic adsorption at the air-water interface. The addition of PEI, at pH 7 and 10, results in a significant modification of the surface partitioning of the SDS/dodecyl betaine mixture. The strong surface interaction at high pH (pH 7 and 10) between the PEI and SDS dominates the surface behavior. For solution compositions in the range 20/80-80/20 mol ratio dodecyl betaine/SDS at pH 7 the surface composition is strongly biased towards the SDS. At pH 10 a similar behavior is observed for a solution composition of 50/50 mol ratio dodecyl betaine/SDS. This strong partitioning in favor of the SDS at high pH is attributed to the strong ion-dipole attraction between the SDS sulfate and the PEI imine groups. At pH 3, where the electrostatic interactions between the surfactant and the PEI are dominant, the dodecyl betaine more effectively competes with the SDS for the interface, and the surface composition is much closer to the solution composition.

2.
J Colloid Interface Sci ; 356(2): 656-64, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21295787

ABSTRACT

The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH.


Subject(s)
Benzenesulfonates/chemistry , Surface-Active Agents/chemistry , Adsorption , Air , Electrolytes/chemistry , Hydrogen-Ion Concentration , Surface Tension , Water/chemistry
3.
Langmuir ; 27(6): 2601-12, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21265512

ABSTRACT

The adsorption of surfactant/polyelectrolyte mixtures of sodium dodecyl sulfate (SDS) and different modified poly(ethyleneimine) (PEI) polyelectrolytes at the air-water interface has been studied using neutron reflectivity and surface tension. Modification of the PEI by the addition of short ethylene oxide (EO) or propylene oxide (PO) groups is shown to have an impact upon the surface adsorption behavior. This is due to a modification of the polymer/surfactant interaction, an increase in the intrinsic surface activity of the modified polyelectrolyte, and changes in the relative importance of surface and solution complex formation. For the polyelectrolyte PEI, there is a marked change in the surface adsorption behavior between the addition of a single EO group and that of the (EO)3 group. The addition of a single EO or PO group to the PEI results in an SDS concentration and solution pH adsorption dependence that is broadly similar in behavior to that of the unmodified PEI/SDS mixture. That is, there is strong surface complexation and adsorption down to low SDS concentrations, and there is evidence of a strong interaction at high pH in addition to the strong electrostatic attraction at low pH. The addition of a larger ethylene oxide group, triethylene oxide (EO)3, results in a surface adsorption behavior that more closely resembles that of a neutral polymer/ionic surfactant mixture, similar to that observed for PEI with a larger ethylene oxide group, notably PEI-(EO)7. In that case, the adsorption of the polymer/surfactant complex is much less pronounced. The adsorption arises predominantly from competition between the polymer and surfactant and indicates a decrease in the polymer/surfactant interaction with increasing pH. That is, increasing the size of the ethylene oxide group induces a transition from a strong surface polymer/surfactant interaction to a weak polymer/surfactant interaction.

4.
Langmuir ; 25(7): 4027-35, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19714827

ABSTRACT

The interactions between a dicationic gemini surfactant with a six-hydrocarbon spacer (1,2-bis(dodecyldimethyl-ammonio)hexane dibromide, C12C6C12Br2) and anionic polyelectrolyte DNA or sodium (polystyrene sulfonate) (NaPSS) at the air/solution interface have been studied and compared using neutron reflectometry together with surface tension. In the presence of the dichained cationic gemini surfactant, DNA and NaPSS display very different adsorption behaviors. The DNA/gemini mixtures show adsorption behavior very similar to that of DNA/C12TAB mixtures, with enhanced surfactant adsorption at low concentrations and thick structured layers at higher concentrations. However, for the NaPSS/gemini mixtures the amount of gemini at the surface is reduced relative to that in the absence of NaPSS at concentrations below the cmc. These differences in adsorption behavior are attributed to differences in the molecular structure and flexibility of the two polyanions. NaPSS is relatively hydrophobic and flexible enough to form bulk-phase polymer-micelle complexes with the gemini surfactant at low surfactant concentrations, whereas the adsorption of surface complexes is much less favorable because the dications on the gemini would require adjacent bulky pendant charges on the NaPSS to be oriented toward the surface. This would force the NaPSS to bend significantly whereas it is more favorable for the NaPSS to adopt an extended conformation at the surface. Thus, surfactant is actually removed from the surface to form bulk-phase complexes. In contrast with NaPSS, DNA has a far more rigid structure, and the charges on the backbone are at fixed intervals, factors that make the formation of surface DNA-monomer complexes much more favorable than bulk-phase DNA-micelle complexes. Finally, a short-chain sample of NaPSS consisting of only five to six segments adsorbs very strongly at the surface with the gemini to form more extensive layered structures than have previously been observed, consisting of approximately five sublayers.


Subject(s)
Air , DNA/chemistry , Polystyrenes/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Molecular Weight , Neutron Diffraction , Surface Tension
5.
Langmuir ; 25(7): 3972-80, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19714886

ABSTRACT

The surface tension and adsorption behavior of polymer/surfactant mixtures of polyethyleneimine (PEI)/sodium dodecyl sulfate (SDS) is strongly dependent on pH. At both low and high pH, a strong PEI/SDS interaction gives rise to surface polymer/surfactant complex formation that results in significantly enhanced SDS adsorption at very low SDS concentrations and in multilayer formation at the interface. At low pH, this strong PEI/SDS interaction is dominated by the electrostatic attraction between the two oppositely charged species. However, at high pH the PEI is essentially neutral, and the origin of the "hydrophobic" interaction, or interaction of nonelectrostatic origin, is less clear. To investigate the origins of this interaction further, we have used neutron reflectivity and surface tension to study the pH dependence of the surface adsorption of different anionic surfactants-SDS, lithium dodecyl sulfate (LiDS), and sodium dodecyl benzene sulfonate (LAS)--in the presence of a range of small amine molecules (from ethylenediamine to pentaethylenehexamine). Analogous to that observed in PEI/SDS mixtures, the presence of amine molecules induces a strong enhancement in the surfactant adsorption at both low and high pH, which can result in extreme cases in multilayer formation at the interface. At high pH, the adsorption is highly dependent upon the amine molecular weight and is equivalent to that observed at low pH by the time the molecular weight of the amine has increased to that of pentaethylenehexamine. We attribute this nonelectrostatic interaction observed at high pH to the combined effect of a dipole-dipole interaction between the sulfate (or sulfonate) headgroup and the amine nitrogens and a cooperative hydrophobic interaction between the chains of the attached surfactants. At high pH and when there are at least six amine groups present, this effect appears to be equivalent in strength to the electrostatic attraction that dominates at low pH. These results are significant in the context of understanding the unusual nature of the PEI/surfactant interaction and of using small molecular weight additives rather than much larger molecular weight polymers to manipulate adsorption properties.

6.
Langmuir ; 24(5): 1863-72, 2008 Mar 04.
Article in English | MEDLINE | ID: mdl-18220428

ABSTRACT

The interactions between dodecyl trimethylammonium bromide (C12TAB) and two samples of DNA with widely differing molecular weights have been studied using surface tension and neutron reflectometry. Neutron reflection data show that the surfactant and polymer are adsorbed together in a highly cooperative fashion over a 1000-fold change in surfactant concentration. Furthermore, the shorter DNA fragments adsorb with C12TAB as trilayers at higher surfactant concentrations, with overall layer thicknesses of 65-70 A. The high molecular weight DNA, however, shows only approximate monolayer adsorption with thicknesses varying from 19 to 26 A over the entire range of C12TAB concentrations. The difference in behavior between the different samples is believed to be a result of the rigid double helical structure of DNA which makes the formation of bulk phase polymer/micelle aggregates much less favorable for the short fragments. The resulting increase in the critical aggregation concentration (CAC) then leads to the adsorption of additional surfactant/polymer complex to the underside of the initial stable surface active DNA/C12TAB complex. Comparison with previous results obtained for synthetic polyelectrolytes shows that DNA/C12TAB complexes are not capable of reducing the surface tensions to the extent that other mixtures such as the poly(styrene sulfonate)/C12TAB mixtures do. A possible reason for this is the high rigidity of DNA combined with the fact that its hydrophobic moieties are positioned within the double helix so that the external molecule is largely hydrophilic.


Subject(s)
DNA/chemistry , Neutrons , Quaternary Ammonium Compounds/chemistry , Water/chemistry , Adsorption , Air , Scattering, Radiation , Spectrum Analysis , Surface Tension
7.
Adv Colloid Interface Sci ; 132(2): 69-110, 2007 Apr 28.
Article in English | MEDLINE | ID: mdl-17328859

ABSTRACT

The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.

8.
Langmuir ; 23(7): 3690-8, 2007 Mar 27.
Article in English | MEDLINE | ID: mdl-17295529

ABSTRACT

The addition of electrolyte (0.1 M NaCl) is shown to have a significant impact upon the surfactant concentration and solution pH dependence of the adsorption of sodium dodecyl sulfate (SDS)/polyethyleneimine (PEI) complexes at the air-solution interface. Substantial adsorption is observed over a wide surfactant concentration range (from 10(-6) to 10(-)2 M), and over much of that range of concentrations the adsorption is characterized by the formation of surface multilayers. The surface multilayer formation is most pronounced at high pH and for PEI with a lower molecular weight of 2K, compared to the higher molecular weight of 25K. These results, obtained from a combination of neutron reflectivity and surface tension, highlight the substantial enhancement in surfactant adsorption achieved by the addition of a combination of the polyelectrolyte, PEI, and a simple electrolyte. Furthermore the effect of electrolyte on the pH dependence of the adsorption further highlights the importance of the hydrophobic interaction in surface surfactant/polyelectrolyte complex formation.

9.
Langmuir ; 23(6): 3128-36, 2007 Mar 13.
Article in English | MEDLINE | ID: mdl-17249706

ABSTRACT

The effect of alkyl chain length and electrolyte on the adsorption of sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface has been investigated by surface tension and neutron reflectivity. The variations in the patterns of adsorption and surface tension behavior with alkyl chain length and electrolyte are discussed in the context of the competition between the formation of surface active surfactant/polyelectrolyte complexes and polyelectrolyte/surfactant micelle complexes in solution. A theoretical approach based on the law of mass action has been used to predict the surface effects arising from the competition between the formation of polyelectrolyte/surfactant surface and solution complexes and the formation of free surfactant micelles. This relatively straightforward model is shown to reproduce the principal features of the experimental results.

10.
Langmuir ; 22(21): 8840-9, 2006 Oct 10.
Article in English | MEDLINE | ID: mdl-17014126

ABSTRACT

The polyelectrolyte poly(ethylenenimine), PEI, is shown to strongly influence the adsorption of the anionic-nonionic surfactant mixture of sodium dodecyl sulfate, SDS, and monododecyl hexaethylene glycol, C(12)E(6), at the air-solution interface. In the presence of PEI, the partitioning of the mixed surfactants to the interface is highly pH-dependent. The adsorption is more strongly biased to the SDS as the pH increases, as the PEI becomes a weaker polyelectrolyte. At surfactant concentrations >10(-4) M, the strong interaction and adsorption result in multilayer formation at the interface, and this covers a more extensive range of surfactant concentrations at higher pH values. The results are consistent with a strong interaction between SDS and PEI at the surface that is not predominantly electrostatic in origin. It provides an attractive route to selectively manipulate the adsorption and composition of surfactant mixtures at interfaces.

11.
Langmuir ; 22(18): 7617-21, 2006 Aug 29.
Article in English | MEDLINE | ID: mdl-16922541

ABSTRACT

Neutron reflectivity and surface tension have been used to investigate the pH sensitivity of the adsorption of poly-L-lysine hydrobromide and sodium dodecyl sulfate mixtures at the air-solution interface. The surface tension variation with surfactant concentration is complex, and between the critical aggregation concentration and critical micellar concentration there is a marked increase in the surface tension. The neutron reflectivity results show that this is associated with a depletion of the surface of polypeptide/surfactant complexes. The variations in the adsorption and surface tension with pH are attributed to changes in the polypeptide conformation at the interface and in solution.


Subject(s)
Polylysine/chemistry , Sodium Dodecyl Sulfate/chemistry , Adsorption , Hydrogen-Ion Concentration , Neutrons , Solutions , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...