Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Brain ; 16(1): 6, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639708

ABSTRACT

Synaptic degeneration is a precursor of synaptic and neuronal loss in neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia with tau pathology (FTD-tau), a group of primary tauopathies. A critical role in this degenerative process is assumed by enzymes such as the kinase Fyn and its counterpart, the phosphatase striatal-enriched tyrosine phosphatase 61 (STEP61). Whereas the role of Fyn has been widely explored, less is known about STEP61 that localises to the postsynaptic density (PSD) of glutamatergic neurons. In dementias, synaptic loss is associated with an increased burden of pathological aggregates. Tau pathology is a hallmark of both AD (together with amyloid-ß deposition) and FTD-tau. Here, we examined STEP61 and its activity in human and animal brain tissue and observed a correlation between STEP61 and disease progression. In early-stage human AD, an initial increase in the level and activity of STEP61 was observed, which decreased with the loss of the synaptic marker PSD-95; in FTD-tau, there was a reduction in STEP61 and PSD-95 which correlated with clinical diagnosis. In APP23 mice with an amyloid-ß pathology, the level and activity of STEP61 were increased in the synaptic fraction compared to wild-type littermates. Similarly, in the K3 mouse model of FTD-tau, which we assessed at two ages compared to wild-type, expression and activity of STEP61 were increased with ageing. Together, these findings suggest that STEP contributes differently to the pathogenic process in AD and FTD-tau, and that its activation may be an early response to a degenerative process.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Protein Tyrosine Phosphatases, Non-Receptor , Animals , Humans , Mice , Alzheimer Disease/metabolism , Amyloid , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Frontotemporal Dementia/metabolism , Mice, Transgenic , Protein Tyrosine Phosphatases/metabolism , tau Proteins , Tyrosine , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
2.
Acta Neuropathol Commun ; 9(1): 110, 2021 06 19.
Article in English | MEDLINE | ID: mdl-34147135

ABSTRACT

The synthesis of new proteins is a fundamental aspect of cellular life and is required for many neurological processes, including the formation, updating and extinction of long-term memories. Protein synthesis is impaired in neurodegenerative diseases including tauopathies, in which pathology is caused by aberrant changes to the microtubule-associated protein tau. We recently showed that both global de novo protein synthesis and the synthesis of select ribosomal proteins (RPs) are decreased in mouse models of frontotemporal dementia (FTD) which express mutant forms of tau. However, a comprehensive analysis of the effect of FTD-mutant tau on ribosomes is lacking. Here we used polysome profiling, de novo protein labelling and mass spectrometry-based proteomics to examine how ribosomes are altered in models of FTD. We identified 10 RPs which were decreased in abundance in primary neurons taken from the K3 mouse model of FTD. We further demonstrate that expression of human tau (hTau) decreases both protein synthesis and biogenesis of the 60S ribosomal subunit, with these effects being exacerbated in the presence of FTD-associated tau mutations. Lastly, we demonstrate that expression of the amino-terminal projection domain of hTau is sufficient to reduce protein synthesis and ribosomal biogenesis. Together, these data reinforce a role for tau in impairing ribosomal function.


Subject(s)
Frontotemporal Dementia , Protein Biosynthesis/physiology , Ribosomal Proteins/metabolism , Ribosomes/pathology , tau Proteins/metabolism , Animals , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Male , Mice , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...