Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
mBio ; 15(4): e0030324, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38501887

ABSTRACT

Chlamydiae are obligate intracellular bacterial pathogens that may cause genital pathology via induction of destructive host immune responses. Human-adapted Chlamydia trachomatis causes inflammatory disease in human hosts but is easily cleared in mice, and mouse-adapted Chlamydia muridarum establishes a productive and pathogenic infection in murine hosts. While numerous anti-chlamydial host resistance factors have been discovered in mice and humans alike, little is known about host factors promoting host fitness independent of host resistance. Here, we show that interferon-inducible immunity-related GTPase M (Irgm) proteins function as such host factors ameliorating infection-associated sequalae in the murine female genital tract, thus characterizing Irgm proteins as mediators of disease tolerance. Specifically, we demonstrate that mice deficient for all three murine Irgm paralogs (pan-Irgm-/-) are defective for cell-autonomous immunity to C. trachomatis, which correlates with an early and transient increase in bacterial burden and sustained hyperinflammation in vivo. In contrast, upon infection of pan-Irgm-/- mice with C. muridarum, bacterial burden is unaffected, yet genital inflammation and scarring pathology are nonetheless increased, demonstrating that Irgm proteins can promote host fitness without altering bacterial burden. Additionally, pan-Irgm-/- mice display increased granulomatous inflammation in genital Chlamydia infection, implicating Irgm proteins in the regulation of granuloma formation and maintenance. These findings demonstrate that Irgm proteins regulate pathogenic immune responses to Chlamydia infection in vivo, establishing an effective infection model to examine the immunoregulatory functions and mechanisms of Irgm proteins. IMPORTANCE: In response to genital Chlamydia infection, the immune system mounts a proinflammatory response to resist the pathogen, yet inflammation must be tightly controlled to avoid collateral damage and scarring to host genital tissue. Variation in the human IRGM gene is associated with susceptibility to autoinflammatory diseases but its role in ameliorating inflammatory diseases caused by infections is poorly defined. Here, we use mice deficient for all three murine Irgm paralogs to demonstrate that Irgm proteins not only provide host resistance to Chlamydia infections but also limit associated inflammation in the female genital tract. In particular, we find that murine Irgm expression prevents granulomatous inflammation, which parallels inflammatory diseases associated with variants in human IRGM. Our findings therefore establish genital Chlamydia infection as a useful model to study the roles for Irgm proteins in both promoting protective immunity and limiting pathogenic inflammation.


Subject(s)
Chlamydia Infections , Chlamydia muridarum , Animals , Female , Mice , Chlamydia Infections/microbiology , Chlamydia muridarum/genetics , Chlamydia trachomatis , Cicatrix/pathology , Genitalia , Inflammation/pathology
2.
Transl Psychiatry ; 14(1): 4, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184702

ABSTRACT

People who experience trauma and develop posttraumatic stress disorder (PTSD) are at increased risk for poor health. One mechanism that could explain this risk is accelerated biological aging, which is associated with the accumulation of chronic diseases, disability, and premature mortality. Using data from 2309 post-9/11 United States military veterans who participated in the VISN 6 MIRECC's Post-Deployment Mental Health Study, we tested whether PTSD and trauma exposure were associated with accelerated rate of biological aging, assessed using a validated DNA methylation (DNAm) measure of epigenetic aging-DunedinPACE. Veterans with current PTSD were aging faster than those who did not have current PTSD, ß = 0.18, 95% CI [0.11, 0.27], p < .001. This effect represented an additional 0.4 months of biological aging each year. Veterans were also aging faster if they reported more PTSD symptoms, ß = 0.13, 95% CI [0.09, 0.16], p < 0.001, or higher levels of trauma exposure, ß = 0.09, 95% CI [0.05, 0.13], p < 0.001. Notably, veterans with past PTSD were aging more slowly than those with current PTSD, ß = -0.21, 95% CI [-0.35, -0.07], p = .003. All reported results accounted for age, gender, self-reported race/ethnicity, and education, and remained when controlling for smoking. Our findings suggest that an accelerated rate of biological aging could help explain how PTSD contributes to poor health and highlights the potential benefits of providing efficacious treatment to populations at increased risk of trauma and PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , Humans , Stress Disorders, Post-Traumatic/epidemiology , Aging , DNA Methylation , Educational Status
4.
Psychosom Med ; 85(5): 389-396, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37053097

ABSTRACT

OBJECTIVE: Stress and stressful events are associated with poorer health; however, there are multiple ways to conceptualize and measure stress and stress responses. One physiological mechanism through which stress could result in poorer health is accelerated biological aging. This study tested which types of stress were associated with accelerated biological aging in adulthood. METHODS: Studying 955 participants from the Dunedin Longitudinal Study, we tested whether four types of stress assessed from ages 32 to 45 years-perceived stress, number of stressful life events, adverse childhood experiences, and posttraumatic stress disorder-were associated with accelerated biological aging. RESULTS: Higher levels of all four measures of stress were significantly associated with accelerated aging in separate models. In a combined model, more perceived stress and more stressful life events remained associated with faster aging, and the stress measures explained 6.9% of the variance in aging. The magnitudes of the associations between the four measures of stress and biological aging were comparable to associations for smoking and low education, two established risk factors for accelerated aging. People with high levels of perceived stress, numerous adverse childhood experiences (4+), high stressful life event counts, or posttraumatic stress disorder were aging an additional estimated 2.4 months, 1.1 additional months, 1.4 months, and 1.4 months per year, respectively. CONCLUSIONS: Assessing stress, particularly perceived stress, could help identify people at risk of accelerated aging. Intervening to treat stress or the health-relevant sequelae of stress could potentially slow the rate at which people are aging, improving their health as they age.


Subject(s)
Adverse Childhood Experiences , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/epidemiology , Longitudinal Studies , Aging , Stress, Psychological/epidemiology , Life Change Events
5.
bioRxiv ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36865100

ABSTRACT

Interferons are essential for innate and adaptive immune responses against a wide variety of pathogens. Interferon lambda (IFN-λ) protects mucosal barriers during pathogen exposure. The intestinal epithelium is the first contact site for Toxoplasma gondii (T. gondii) with its hosts and the first defense line that limits parasite infection. Knowledge of very early T. gondii infection events in the gut tissue is limited and a possible contribution of IFN-λ has not been investigated so far. Here, we demonstrate with systemic interferon lambda receptor (IFNLR1) and conditional (Villin-Cre) knockout mouse models and bone marrow chimeras of oral T. gondii infection and mouse intestinal organoids a significant impact of IFN-λ signaling in intestinal epithelial cells and neutrophils to T. gondii control in the gastrointestinal tract. Our results expand the repertoire of interferons that contribute to the control of T. gondii and may lead to novel therapeutic approaches against this world-wide zoonotic pathogen.

6.
Nat Commun ; 13(1): 7613, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494364

ABSTRACT

Pathologies associated with sarcopenia include decline in muscular strength, lean mass and regenerative capacity. Despite the substantial impact on quality of life, no pharmacological therapeutics are available to counteract the age-associated decline in functional capacity and/or, resilience. Evidence suggests immune-secreted cytokines can improve muscle regeneration, a strategy which we leverage in this study by rescuing the age-related deficiency in Meteorin-like through several in vivo add-back models. Notably, the intramuscular, peptide injection of recombinant METRNL was sufficient to improve muscle regeneration in aging. Using ex vivo media exchange and in vivo TNF inhibition, we demonstrate a mechanism of METRNL action during regeneration, showing it counteracts a pro-fibrotic gene program by triggering TNFα-induced apoptosis of fibro/adipogenic progenitor cells. These findings demonstrate therapeutic applications for METRNL to improve aged muscle, and show Fibro/Adipogenic Progenitors are viable therapeutic targets to counteract age-related loss in muscle resilience.


Subject(s)
Muscle, Skeletal , Quality of Life , Muscle, Skeletal/physiology , Adipogenesis , Stem Cells , Cytokines
7.
Sci Rep ; 12(1): 850, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039539

ABSTRACT

Immunity Related GTPases (IRG) are a family of proteins produced during infection that regulate membrane remodeling events in cells, particularly autophagy and mitophagy. The human IRGM gene has been strongly associated with Crohn's disease and other inflammatory diseases through Genome-Wide Association studies. Absence of Irgm1 in mice prompts intestinal inflammation, autoimmunity, and impaired immune control of pathogenic bacteria and protozoa. Although prior work has focused on a prominent role for IRGM/Irgm1 in regulating macrophage function, the work described here addresses a potential role of Irgm1 in regulating the function of mature T cells. Irgm1 was found to be highly expressed in T cells in a manner that varied with the particular T cell subset and increased with activation. Mice with a complete lack of Irgm1, or a conditional lack of Irgm1 specifically in T cells, displayed numerous changes in T cell numbers and function in all subsets examined, including CD4+ (Th1 and Treg) and CD8+ T cells. Related to changes in T cell number, apoptosis was found to be increased in Irgm1-deficient CD4+ and CD8+ T cells. Altered T cell metabolism appeared to be a key driver of the phenotypes: Glucose metabolism and glycolysis were increased in Irgm1-deficient CD4+ and CD8+ T cells, and muting these effects with glycolytic inhibitors partially restored T cell function and viability.


Subject(s)
GTP-Binding Proteins/physiology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/physiology , Animals , Apoptosis/genetics , Autophagy/genetics , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cells, Cultured , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression/genetics , Glucose/metabolism , Glycolysis , Lymphocyte Activation/genetics , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocyte Subsets/immunology
8.
Autophagy Rep ; 1(1): 438-515, 2022.
Article in English | MEDLINE | ID: mdl-37425656

ABSTRACT

Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.

9.
Mucosal Immunol ; 15(2): 362-372, 2022 02.
Article in English | MEDLINE | ID: mdl-34750455

ABSTRACT

The intestinal parasite, Cryptosporidium, is a major contributor to global child mortality and causes opportunistic infection in immune deficient individuals. Innate resistance to Cryptosporidium, which specifically invades enterocytes, is dependent on the production of IFN-γ, yet whether enterocytes contribute to parasite control is poorly understood. In this study, utilizing a mouse-adapted strain of C. parvum, we show that epithelial-derived IL-18 synergized with IL-12 to stimulate innate lymphoid cell (ILC) production of IFN-γ required for early parasite control. The loss of IFN-γ-mediated STAT1 signaling in enterocytes, but not dendritic cells or macrophages, antagonized early parasite control. Transcriptional profiling of enterocytes from infected mice identified an IFN-γ signature and enrichment of the anti-microbial effectors IDO, GBP, and IRG. Deletion experiments identified a role for Irgm1/m3 in parasite control. Thus, enterocytes promote ILC production of IFN-γ that acts on enterocytes to restrict the growth of Cryptosporidium.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Cryptosporidiosis/parasitology , Enterocytes , Humans , Immunity, Innate , Lymphocytes , Mice
10.
Infect Immun ; 89(11): e0020221, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34338548

ABSTRACT

Gamma interferon (IFN-γ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii. Effector IRGs are loaded onto the Toxoplasma-containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFN-γ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to Toxoplasma. However, the role of the third regulatory IRG, Irgm2, in cell-autonomous immunity to Toxoplasma has remained unexplored. Here, we report that Irgm2 unexpectedly plays a limited role in the targeting of effector IRGs, ubiquitin, and Gbps to the Toxoplasma PV. Instead, Irgm2 is instrumental in the decoration of PVs with γ-aminobutyric acid receptor-associated protein-like 2 (GabarapL2). Cells lacking Irgm2 are as defective for cell-autonomous host defense to Toxoplasma as pan-Irgm-/- cells lacking all three Irgm proteins, and Irgm2-/- mice succumb to Toxoplasma infections as readily as pan-Irgm-/- mice. These findings demonstrate that, relative to Irgm1 and Irgm3, Irgm2 plays a distinct but critically important role in host resistance to Toxoplasma.


Subject(s)
GTP Phosphohydrolases/physiology , GTP-Binding Proteins/physiology , Toxoplasmosis/immunology , Animals , Apoptosis Regulatory Proteins/physiology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/physiology , Ubiquitin/physiology , Vacuoles/physiology
11.
Front Immunol ; 12: 661290, 2021.
Article in English | MEDLINE | ID: mdl-33995384

ABSTRACT

Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.


Subject(s)
Colon/immunology , Dendritic Cells/immunology , Macrophages/immunology , Phagocytes/immunology , Th17 Cells/immunology , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , CD24 Antigen/immunology , CD24 Antigen/metabolism , Colon/cytology , Colon/metabolism , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Gene Expression/immunology , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Intestine, Small/immunology , Lipopolysaccharide Receptors/immunology , Lipopolysaccharide Receptors/metabolism , Macrophages/metabolism , Mice, 129 Strain , Mice, Knockout , Mice, Transgenic , Phagocytes/metabolism , Receptor, Anaphylatoxin C5a/immunology , Receptor, Anaphylatoxin C5a/metabolism , Th17 Cells/metabolism
12.
Nat Immunol ; 22(3): 312-321, 2021 03.
Article in English | MEDLINE | ID: mdl-33510463

ABSTRACT

Mitochondrial abnormalities have been noted in lupus, but the causes and consequences remain obscure. Autophagy-related genes ATG5, ATG7 and IRGM have been previously implicated in autoimmune disease. We reasoned that failure to clear defective mitochondria via mitophagy might be a foundational driver in autoimmunity by licensing mitochondrial DNA-dependent induction of type I interferon. Here, we show that mice lacking the GTPase IRGM1 (IRGM homolog) exhibited a type I interferonopathy with autoimmune features. Irgm1 deletion impaired the execution of mitophagy with cell-specific consequences. In fibroblasts, mitochondrial DNA soiling of the cytosol induced cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent type I interferon, whereas in macrophages, lysosomal Toll-like receptor 7 was activated. In vivo, Irgm1-/- tissues exhibited mosaic dependency upon nucleic acid receptors. Whereas salivary and lacrimal gland autoimmune pathology was abolished and lung pathology was attenuated by cGAS and STING deletion, pancreatic pathology remained unchanged. These findings reveal fundamental connections between mitochondrial quality control and tissue-selective autoimmune disease.


Subject(s)
Autoimmune Diseases/metabolism , Autoimmunity , Fibroblasts/metabolism , GTP-Binding Proteins/metabolism , Mitochondria/metabolism , Mitophagy , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cells, Cultured , Fibroblasts/immunology , Fibroblasts/pathology , GTP-Binding Proteins/deficiency , GTP-Binding Proteins/genetics , Gene Expression Regulation , Macrophages/immunology , Macrophages/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/immunology , Mitochondria/pathology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
13.
Clin Cancer Res ; 27(1): 202-212, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33020056

ABSTRACT

PURPOSE: Immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid tumors with dramatic and durable responses seen across multiple tumor types. However, identifying patients who will respond to these drugs remains challenging, particularly in the context of advanced and previously treated cancers. EXPERIMENTAL DESIGN: We characterized fresh tumor biopsies from a heterogeneous pan-cancer cohort of 98 patients with metastatic predominantly pretreated disease through the Personalized OncoGenomics program at BC Cancer (Vancouver, Canada) using whole genome and transcriptome analysis (WGTA). Baseline characteristics and follow-up data were collected retrospectively. RESULTS: We found that tumor mutation burden, independent of mismatch repair status, was the most predictive marker of time to progression (P = 0.007), but immune-related CD8+ T-cell and M1-M2 macrophage ratio scores were more predictive for overall survival (OS; P = 0.0014 and 0.0012, respectively). While CD274 [programmed death-ligand 1 (PD-L1)] gene expression is comparable with protein levels detected by IHC, we did not observe a clinical benefit for patients with this marker. We demonstrate that a combination of markers based on WGTA provides the best stratification of patients (P = 0.00071, OS), and also present a case study of possible acquired resistance to pembrolizumab in a patient with non-small cell lung cancer. CONCLUSIONS: Interpreting the tumor-immune interface to predict ICI efficacy remains challenging. WGTA allows for identification of multiple biomarkers simultaneously that in combination may help to identify responders, particularly in the context of a heterogeneous population of advanced and previously treated cancers, thus precluding tumor type-specific testing.


Subject(s)
Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Canada , Clinical Decision-Making , Female , Follow-Up Studies , Genetic Testing/methods , Humans , Immune Checkpoint Inhibitors/pharmacology , Kaplan-Meier Estimate , Male , Middle Aged , Mutation , Neoplasm Staging , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/mortality , Patient Selection , Precision Medicine/methods , Treatment Outcome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
14.
EMBO Rep ; 21(11): e50830, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33124745

ABSTRACT

Inflammation associated with gram-negative bacterial infections is often instigated by the bacterial cell wall component lipopolysaccharide (LPS). LPS-induced inflammation and resulting life-threatening sepsis are mediated by the two distinct LPS receptors TLR4 and caspase-11 (caspase-4/-5 in humans). Whereas the regulation of TLR4 activation by extracellular and phago-endosomal LPS has been studied in great detail, auxiliary host factors that specifically modulate recognition of cytosolic LPS by caspase-11 are largely unknown. This study identifies autophagy-related and dynamin-related membrane remodeling proteins belonging to the family of Immunity-related GTPases M clade (IRGM) as negative regulators of caspase-11 activation in macrophages. Phagocytes lacking expression of mouse isoform Irgm2 aberrantly activate caspase-11-dependent inflammatory responses when exposed to extracellular LPS, bacterial outer membrane vesicles, or gram-negative bacteria. Consequently, Irgm2-deficient mice display increased susceptibility to caspase-11-mediated septic shock in vivo. This Irgm2 phenotype is partly reversed by the simultaneous genetic deletion of the two additional Irgm paralogs Irgm1 and Irgm3, indicating that dysregulated Irgm isoform expression disrupts intracellular LPS processing pathways that limit LPS availability for caspase-11 activation.


Subject(s)
Lipopolysaccharides , Shock, Septic , Animals , Caspases/genetics , Caspases, Initiator , Dynamins , Inflammasomes , Lipopolysaccharides/toxicity , Mice , Shock, Septic/chemically induced , Shock, Septic/genetics
15.
PLoS Pathog ; 16(8): e1008327, 2020 08.
Article in English | MEDLINE | ID: mdl-32853276

ABSTRACT

Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite's protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including 'avirulent' ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Inflammasomes/immunology , Interferon-gamma/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protozoan Proteins/metabolism , Signal Transduction , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Animals , CD8-Positive T-Lymphocytes/parasitology , Female , Macrophages/immunology , Macrophages/parasitology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protozoan Proteins/genetics , Toxoplasmosis, Animal/parasitology , Vacuoles/immunology , Vacuoles/metabolism , Vacuoles/parasitology , Virulence/immunology
16.
PLoS Pathog ; 16(5): e1008553, 2020 05.
Article in English | MEDLINE | ID: mdl-32453761

ABSTRACT

IRGM and its mouse orthologue Irgm1 are dynamin-like proteins that regulate vesicular remodeling, intracellular microbial killing, and pathogen immunity. IRGM dysfunction is linked to inflammatory bowel disease (IBD), and while it is thought that defective intracellular killing of microbes underscores IBD susceptibility, studies have yet to address how IRGM/Irgm1 regulates immunity to microbes relevant to intestinal inflammation. Here we find that loss of Irgm1 confers marked susceptibility to Citrobacter rodentium, a noninvasive intestinal pathogen that models inflammatory responses to intestinal bacteria. Irgm1-deficient mice fail to control C. rodentium outgrowth in the intestine, leading to systemic pathogen spread and host mortality. Surprisingly, susceptibility due to loss of Irgm1 function was not linked to defective intracellular killing of C. rodentium or exaggerated inflammation, but was instead linked to failure to remodel specific colon lamina propria (C-LP) myeloid cells that expand in response to C. rodentium infection and are essential for C. rodentium immunity. Defective immune remodeling was most striking in C-LP monocytes, which were successfully recruited to the infected C-LP, but subsequently underwent apoptosis. Apoptotic susceptibility was induced by C. rodentium infection and was specific to this setting of pathogen infection, and was not apparent in other settings of intestinal inflammation. These studies reveal a novel role for Irgm1 in host defense and suggest that deficiencies in survival and remodeling of C-LP myeloid cells that control inflammatory intestinal bacteria may underpin IBD pathogenesis linked to IRGM dysfunction.


Subject(s)
Citrobacter rodentium/immunology , Colon/immunology , Enterobacteriaceae Infections/immunology , GTP-Binding Proteins/deficiency , Inflammatory Bowel Diseases/immunology , Monocytes/immunology , Animals , Colon/microbiology , Colon/pathology , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/pathology , GTP-Binding Proteins/immunology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Mice , Mice, Knockout , Monocytes/microbiology , Monocytes/pathology , Mucous Membrane/immunology , Mucous Membrane/microbiology , Mucous Membrane/pathology
17.
Nat Cancer ; 1(4): 452-468, 2020 04.
Article in English | MEDLINE | ID: mdl-35121966

ABSTRACT

Advanced and metastatic tumors with complex treatment histories drive cancer mortality. Here we describe the POG570 cohort, a comprehensive whole-genome, transcriptome and clinical dataset, amenable for exploration of the impacts of therapies on genomic landscapes. Previous exposure to DNA-damaging chemotherapies and mutations affecting DNA repair genes, including POLQ and genes encoding Polζ, were associated with genome-wide, therapy-induced mutagenesis. Exposure to platinum therapies coincided with signatures SBS31 and DSB5 and, when combined with DNA synthesis inhibitors, signature SBS17b. Alterations in ESR1, EGFR, CTNNB1, FGFR1, VEGFA and DPYD were consistent with drug resistance and sensitivity. Recurrent noncoding events were found in regulatory region hotspots of genes including TERT, PLEKHS1, AP2A1 and ADGRG6. Mutation burden and immune signatures corresponded with overall survival and response to immunotherapy. Our data offer a rich resource for investigation of advanced cancers and interpretation of whole-genome and transcriptome sequencing in the context of a cancer clinic.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy
18.
Front Immunol ; 10: 2104, 2019.
Article in English | MEDLINE | ID: mdl-31555296

ABSTRACT

Toxoplasma gondii secretes rhoptry (ROP) and dense granule (GRA) effector proteins to evade host immune clearance mediated by interferon gamma (IFN-γ), immunity-related GTPase (IRG) effectors, and CD8+ T cells. Here, we investigated the role of parasite-secreted effectors in regulating host access to parasitophorous vacuole (PV) localized parasite antigens and their presentation to CD8+ T cells by the major histocompatibility class I (MHC-I) pathway. Antigen presentation of PV localized parasite antigens by MHC-I was significantly increased in macrophages and/or dendritic cells infected with mutant parasites that lacked expression of secreted GRA (GRA2, GRA3, GRA4, GRA5, GRA7, GRA12) or ROP (ROP5, ROP18) effectors. The ability of various secreted GRA or ROP effectors to suppress antigen presentation by MHC-I was dependent on cell type, expression of IFN-γ, or host IRG effectors. The suppression of antigen presentation by ROP5, ROP18, and GRA7 correlated with a role for these molecules in preventing PV disruption by IFN-γ-activated host IRG effectors. However, GRA2 mediated suppression of antigen presentation was not correlated with PV disruption. In addition, the GRA2 antigen presentation phenotypes were strictly co-dependent on the expression of the GRA6 protein. These results show that MHC-I antigen presentation of PV localized parasite antigens was controlled by mechanisms that were dependent or independent of IRG effector mediated PV disruption. Our findings suggest that the GRA6 protein underpins an important mechanism that enhances CD8+ T cell recognition of parasite-infected cells with damaged or ruptured PV membranes. However, in intact PVs, parasite secreted effector proteins that associate with the PV membrane or the intravacuolar network membranes play important roles to actively suppress antigen presentation by MHC-I to reduce CD8+ T cell recognition and clearance of Toxoplasma gondii infected host cells.


Subject(s)
Antigen Presentation/immunology , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Protein Serine-Threonine Kinases/immunology , Toxoplasmosis, Animal/immunology , Animals , Mice , Mice, Inbred C57BL , Protozoan Proteins/immunology , Toxoplasma/immunology , Vacuoles/immunology
19.
mBio ; 10(4)2019 07 02.
Article in English | MEDLINE | ID: mdl-31266861

ABSTRACT

Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Interferon-gamma/antagonists & inhibitors , Protozoan Proteins/metabolism , Toxoplasma/immunology , Toxoplasmosis/immunology , Vacuoles/metabolism , Animals , Cell Survival , Cells, Cultured , Disease Models, Animal , Female , Gene Deletion , Intracellular Membranes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Models, Theoretical , Protozoan Proteins/genetics , Survival Analysis , Toxoplasma/growth & development , Toxoplasmosis/parasitology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
20.
Genes (Basel) ; 10(6)2019 06 03.
Article in English | MEDLINE | ID: mdl-31163709

ABSTRACT

: The threespine stickleback is a geographically widespread and ecologically highly diverse fish that has emerged as a powerful model system for evolutionary genomics and developmental biology. Investigations in this species currently rely on a single high-quality reference genome, but would benefit from the availability of additional, independently sequenced and assembled genomes. We present here the assembly of four new stickleback genomes, based on the sequencing of microfluidic partitioned DNA libraries. The base pair lengths of the four genomes reach 92-101% of the standard reference genome length. Together with their de novo gene annotation, these assemblies offer a resource enhancing genomic investigations in stickleback. The genomes and their annotations are available from the Dryad Digital Repository (https://doi.org/10.5061/dryad.113j3h7).


Subject(s)
Genome/genetics , Molecular Sequence Annotation , Smegmamorpha/genetics , Animals , Gene Library , Genomics/methods , Microfluidics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...