Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nat Commun ; 12(1): 1260, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627662

ABSTRACT

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Subject(s)
COVID-19/immunology , COVID-19/virology , Lung/pathology , Lung/virology , Animals , Disease Models, Animal , Female , Immunity, Cellular/physiology , Interferon-gamma/metabolism , Macaca fascicularis , Macaca mulatta , Male , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
2.
Nat Commun ; 12(1): 81, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33398055

ABSTRACT

There is a vital need for authentic COVID-19 animal models to enable the pre-clinical evaluation of candidate vaccines and therapeutics. Here we report a dose titration study of SARS-CoV-2 in the ferret model. After a high (5 × 106 pfu) and medium (5 × 104 pfu) dose of virus is delivered, intranasally, viral RNA shedding in the upper respiratory tract (URT) is observed in 6/6 animals, however, only 1/6 ferrets show similar signs after low dose (5 × 102 pfu) challenge. Following sequential culls pathological signs of mild multifocal bronchopneumonia in approximately 5-15% of the lung is seen on day 3, in high and medium dosed groups. Ferrets re-challenged, after virus shedding ceased, are fully protected from acute lung pathology. The endpoints of URT viral RNA replication & distinct lung pathology are observed most consistently in the high dose group. This ferret model of SARS-CoV-2 infection presents a mild clinical disease.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Ferrets/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Dose-Response Relationship, Drug , Female , Lung/immunology , Lung/pathology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Virus Replication/drug effects , Virus Replication/immunology , Virus Shedding/drug effects , Virus Shedding/immunology
3.
Lab Anim ; 54(4): 386-390, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32216534

ABSTRACT

Imaging is used in human medicine to diagnose disease and monitor treatment efficacy. Computed tomography (CT) positron emission tomography (PET) and magnetic resonance (MR) are applied to animal models of infectious diseases to increase data quality, enhance their relevance to the clinical situation, and to address ethical issues through reduction of numbers and refinement of study designs. The time required for collection of MR and PET-CT scans means that normal breathing produces motion artefacts that can render images unacceptable. We report, for the first time, the use of high frequency jet ventilation (HFJV) for respiratory management during imaging of macaques. HFJV enables continuous gaseous exchange, resulting in cessation of spontaneous breathing motion thus providing a motionless field without the potential stresses induced by repeated breath-hold strategies.


Subject(s)
High-Frequency Jet Ventilation/methods , Macaca fascicularis , Macaca mulatta , Respiratory Tract Diseases/diagnostic imaging , Animals , Female
4.
PLoS One ; 11(11): e0167018, 2016.
Article in English | MEDLINE | ID: mdl-27880800

ABSTRACT

The antiviral properties of iminosugars have been reported previously in vitro and in small animal models against Ebola virus (EBOV); however, their effects have not been tested in larger animal models such as guinea pigs. We tested the iminosugars N-butyl-deoxynojirimycin (NB-DNJ) and N-(9-methoxynonyl)-1deoxynojirimycin (MON-DNJ) for safety in uninfected animals, and for antiviral efficacy in animals infected with a lethal dose of guinea pig adapted EBOV. 1850 mg/kg/day NB-DNJ and 120 mg/kg/day MON-DNJ administered intravenously, three times daily, caused no adverse effects and were well tolerated. A pilot study treating infected animals three times within an 8 hour period was promising with 1 of 4 infected NB-DNJ treated animals surviving and the remaining three showing improved clinical signs. MON-DNJ showed no protective effects when EBOV-infected guinea pigs were treated. On histopathological examination, animals treated with NB-DNJ had reduced lesion severity in liver and spleen. However, a second study, in which NB-DNJ was administered at equally-spaced 8 hour intervals, could not confirm drug-associated benefits. Neither was any antiviral effect of iminosugars detected in an EBOV glycoprotein pseudotyped virus assay. Overall, this study provides evidence that NB-DNJ and MON-DNJ do not protect guinea pigs from a lethal EBOV-infection at the dose levels and regimens tested. However, the one surviving animal and signs of improvements in three animals of the NB-DNJ treated cohort could indicate that NB-DNJ at these levels may have a marginal beneficial effect. Future work could be focused on the development of more potent iminosugars.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , Ebolavirus , Hemorrhagic Fever, Ebola/drug therapy , Animals , Disease Models, Animal , Guinea Pigs , Pilot Projects
5.
Viruses ; 8(11)2016 10 27.
Article in English | MEDLINE | ID: mdl-27801778

ABSTRACT

In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Ebolavirus/drug effects , Animals , Antiviral Agents/administration & dosage , Cell Line , Disease Models, Animal , Guinea Pigs , Hemorrhagic Fever, Ebola/drug therapy , Humans , Treatment Outcome
6.
Sci Rep ; 6: 30497, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27465308

ABSTRACT

Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. An ovine polyclonal antibody therapy has been developed against EBOV, named EBOTAb. When tested in the stringent guinea pig model of EBOV disease, EBOTAb has been shown to confer protection at levels of 83.3%, 50% and 33.3% when treatment was first started on days 3, 4 and 5 post-challenge, respectively. These timepoints of when EBOTAb treatment was initiated correspond to when levels of EBOV are detectable in the circulation and thus mimic when treatment would likely be initiated in human infection. The effects of EBOTAb were compared with those of a monoclonal antibody cocktail, ZMapp, when delivered on day 3 post-challenge. Results showed ZMapp to confer complete protection against lethal EBOV challenge in the guinea pig model at this timepoint. The data reported demonstrate that EBOTAb is an effective treatment against EBOV disease, even when delivered late after infection.


Subject(s)
Antibodies, Viral/therapeutic use , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/drug therapy , Post-Exposure Prophylaxis , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/blood , Antibody Specificity/immunology , Antigens, Viral/metabolism , Ebolavirus/genetics , Genome, Viral , Guinea Pigs , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/pathology , Liver/pathology , Liver/virology , RNA, Viral/blood , Sheep , Spleen/pathology , Spleen/virology , Survival Analysis
7.
PLoS One ; 11(6): e0156637, 2016.
Article in English | MEDLINE | ID: mdl-27272940

ABSTRACT

Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge.


Subject(s)
Glycoproteins/immunology , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever, Crimean/immunology , Vaccinia virus/immunology , Viral Proteins/immunology , Viral Vaccines/immunology , Africa/epidemiology , Animals , Asia/epidemiology , Cell Line , Europe, Eastern/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Humans , Immunity, Cellular , Immunity, Humoral , Mice , Middle East/epidemiology
8.
J Infect Dis ; 213(7): 1124-33, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26715676

ABSTRACT

The highly glycosylated glycoprotein spike of Ebola virus (EBOV-GP1,2) is the primary target of the humoral host response. Recombinant EBOV-GP ectodomain (EBOV-GP1,2ecto) expressed in mammalian cells was used to immunize sheep and elicited a robust immune response and produced high titers of high avidity polyclonal antibodies. Investigation of the neutralizing activity of the ovine antisera in vitro revealed that it neutralized EBOV. A pool of intact ovine immunoglobulin G, herein termed EBOTAb, was prepared from the antisera and used for an in vivo guinea pig study. When EBOTAb was delivered 6 hours after challenge, all animals survived without experiencing fever or other clinical manifestations. In a second series of guinea pig studies, the administration of EBOTAb dosing was delayed for 48 or 72 hours after challenge, resulting in 100% and 75% survival, respectively. These studies illustrate the usefulness of EBOTAb in protecting against EBOV-induced disease.


Subject(s)
Antibodies, Viral/therapeutic use , Ebolavirus/physiology , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/therapy , Immunoglobulin G/therapeutic use , Membrane Glycoproteins/metabolism , Animals , Antibodies, Viral/economics , Cost-Benefit Analysis , Ebolavirus/immunology , Female , Gene Expression Regulation, Viral , Guinea Pigs , HEK293 Cells , Hemorrhagic Fever, Ebola/economics , Humans , Immunoglobulin G/economics , Membrane Glycoproteins/immunology , Protein Binding , Protein Structure, Tertiary , Sheep , Viral Load
9.
J Gen Virol ; 96(12): 3484-3492, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26459826

ABSTRACT

Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. Owing to the lack of approved therapies, screening programmes of potentially efficacious drugs have been undertaken. One of these studies has demonstrated the possible utility of chloroquine against EBOV using pseudotyped assays. In mouse models of EBOV disease there are conflicting reports of the therapeutic effects of chloroquine. There are currently no reports of its efficacy using the larger and more stringent guinea pig model of infection. In this study we have shown that replication of live EBOV is impaired by chloroquine in vitro. However, no protective effects were observed in vivo when EBOV-infected guinea pigs were treated with chloroquine. These results advocate that chloroquine should not be considered as a treatment strategy for EBOV.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Virus Replication/drug effects , Animals , Antimalarials/therapeutic use , Chloroquine/therapeutic use , Ebolavirus/physiology , Female , Guinea Pigs , Hemorrhagic Fever, Ebola/prevention & control , Humans , RNA, Viral/drug effects
10.
Genome Biol ; 15(11): 540, 2014.
Article in English | MEDLINE | ID: mdl-25416632

ABSTRACT

BACKGROUND: Ebolaviruses causes a severe and often fatal hemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. RESULTS: To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naive animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. CONCLUSIONS: Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/genetics , Sequence Analysis, DNA , Viral Proteins/genetics , Animals , Disease Models, Animal , Ebolavirus/pathogenicity , Guinea Pigs , Hemorrhagic Fever, Ebola/virology , Humans , RNA Editing/genetics
13.
PLoS One ; 9(4): e94090, 2014.
Article in English | MEDLINE | ID: mdl-24709834

ABSTRACT

Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines.


Subject(s)
Antiviral Agents/therapeutic use , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/drug therapy , Oseltamivir/therapeutic use , Virus Shedding , Animals , Disease Models, Animal , Ferrets , Treatment Outcome
14.
J Virol ; 87(14): 7805-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23658452

ABSTRACT

To support the licensure of a new and safer vaccine to protect people against smallpox, a monkeypox model of infection in cynomolgus macaques, which simulates smallpox in humans, was used to evaluate two vaccines, Acam2000 and Imvamune, for protection against disease. Animals vaccinated with a single immunization of Imvamune were not protected completely from severe and/or lethal infection, whereas those receiving either a prime and boost of Imvamune or a single immunization with Acam2000 were protected completely. Additional parameters, including clinical observations, radiographs, viral load in blood, throat swabs, and selected tissues, vaccinia virus-specific antibody responses, immunophenotyping, extracellular cytokine levels, and histopathology were assessed. There was no significant difference (P > 0.05) between the levels of neutralizing antibody in animals vaccinated with a single immunization of Acam2000 (132 U/ml) and the prime-boost Imvamune regime (69 U/ml) prior to challenge with monkeypox virus. After challenge, there was evidence of viral excretion from the throats of 2 of 6 animals in the prime-boost Imvamune group, whereas there was no confirmation of excreted live virus in the Acam2000 group. This evaluation of different human smallpox vaccines in cynomolgus macaques helps to provide information about optimal vaccine strategies in the absence of human challenge studies.


Subject(s)
Immunization/methods , Orthopoxvirus/immunology , Poxviridae Infections/prevention & control , Smallpox Vaccine/pharmacology , Animals , Antibodies, Neutralizing/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Macaca fascicularis , Male , Real-Time Polymerase Chain Reaction , Vaccines, Attenuated/pharmacology , Virus Shedding/immunology
16.
Antiviral Res ; 97(2): 108-11, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23165089

ABSTRACT

Sequential sampling from animals challenged with highly pathogenic organisms, such as haemorrhagic fever viruses, is required for many pharmaceutical studies. Using the guinea pig model of Ebola virus infection, a catheterized system was used which had the benefits of allowing repeated sampling of the same cohort of animals, and also a reduction in the use of sharps at high biological containment. Levels of a PS-targeting antibody (Bavituximab) were measured in Ebola-infected animals and uninfected controls. Data showed that the pharmacokinetics were similar in both groups, therefore Ebola virus infection did not have an observable effect on the half-life of the antibody.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/therapy , Immunologic Factors/pharmacokinetics , Phosphatidylserines/antagonists & inhibitors , Animals , Antibodies, Monoclonal/administration & dosage , Disease Models, Animal , Guinea Pigs , Immunologic Factors/administration & dosage
18.
PLoS One ; 7(12): e49394, 2012.
Article in English | MEDLINE | ID: mdl-23251341

ABSTRACT

Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI) influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus) and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1). Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes.


Subject(s)
Defective Viruses/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Defective Viruses/genetics , Ferrets , Influenza A virus/genetics , Influenza Vaccines/genetics , Orthomyxoviridae Infections/immunology , Pandemics
19.
Antiviral Res ; 96(3): 376-85, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23041142

ABSTRACT

The main antivirals employed to combat seasonal and pandemic influenza are oseltamivir and zanamivir which act by inhibiting the virus-encoded neuraminidase. These have to be deployed close to the time of infection and antiviral resistance to the more widely used oseltamivir has arisen relatively rapidly. Defective interfering (DI) influenza virus is a natural antiviral that works in a different way to oseltamivir and zanamivir, and a cloned version (segment 1 244 DI RNA in a cloned A/PR/8/34 virus; 244/PR8) has proved effective in preclinical studies in mice. The active principle is the DI RNA, and this is thought to interact with all influenza A viruses by inhibiting RNA virus synthesis and packaging of the cognate virion RNA into nascent DI virus particles. We have compared the ability of DI virus and oseltamivir to protect ferrets from intranasal 2009 pandemic influenza virus A/California/04/09 (A/Cal, H1N1). Ferrets were treated with a single 2 µg intranasal dose of 244 DI RNA delivered as 244/PR8 virus, or a total of 25mg/kg body weight of oseltamivir given as 10 oral doses over 5 days. Both DI virus and oseltamivir reduced day 2 infectivity and the influx of cells into nasal fluids, and permitted the development of adaptive immunity. However DI virus, but not oseltamivir, significantly reduced weight loss, facilitated better weight gain, reduced respiratory disease, and reduced infectivity on days 4 and 6. 244 DI RNA was amplified by A/Cal by >25,000-fold, consistent with the amelioration of clinical disease. Treatment with DI virus did not delay clearance or cause persistence of infectious virus or DI RNA. Thus in this system DI virus was overall more effective than oseltamivir in combatting pandemic A/California/04/09.


Subject(s)
Defective Viruses/immunology , Ferrets/virology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/prevention & control , Oseltamivir/pharmacology , Animals , Antiviral Agents/pharmacology , Cell Line , Ferrets/immunology , Hemagglutination Inhibition Tests , Influenza A Virus, H1N1 Subtype/immunology , Male , Nasal Lavage Fluid/virology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , RNA, Viral/immunology , Transfection , Weight Loss
20.
J Am Med Dir Assoc ; 9(7): 523-31, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18755427

ABSTRACT

The assessment and management of patients in long-term care who have oropharyngeal dysphagia has developed into an apparently complex and distinct field of practice. It is unfortunate that it lacks an evidence base, the efficacy of treatment is not established, and many clinicians are unfamiliar with appropriate and effective interventions because of a lack of training. Some commonly used interventions are not only ineffective but potentially hazardous. Physicians must become more familiar with the assessment process and appropriate management.


Subject(s)
Deglutition Disorders/therapy , Nursing Homes , Deglutition Disorders/epidemiology , Deglutition Disorders/etiology , Deglutition Disorders/physiopathology , Humans , Treatment Outcome , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...